Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
APMIS ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030955

ABSTRACT

Multiple sclerosis is a demyelinating neurodegenerative disease, and its animal model, experimental autoimmune encephalomyelitis (EAE), exhibits immunological and clinical similarities. The study aimed to examine mechanisms underlying therapeutic effects of mesenchymal stem cell administration in EAE. C57BL/6 mice were separated into control and treatment groups (T1, T2, and T3); EAE was induced in all animals. Clinical examinations were conducted daily, and on 25th day, animals were sacrificed, and spinal cord was stained for histological analysis. Additionally, spleen cell proliferation assay, assessments of cytokine, and gene expression in both spinal cord and spleen cells were performed. The results indicated a significant reduction in clinical symptoms among treatment groups compared to control group. Histological analyses revealed decreased infiltration of lymphocytes into the spinal cord and reduced demyelinated areas in treatment groups compared to control group. Cytokine production of IL-10, TGF-ß, and IL-4 were significantly enhanced and IFN-γ and TNF-α in treatment groups were decreased relative to control group. Also, gene expression of CTLA-4, PD-1, IL-27, and IL-33 indicated a significant increase in treatment groups. The administration of MSCs significantly improved clinical symptoms, attenuated inflammation, and reduced spinal cord demyelination in EAE, suggesting a potential protective effect on disease progression.

2.
Immun Inflamm Dis ; 12(3): e1213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38477663

ABSTRACT

Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.


Subject(s)
Berberine , Multiple Sclerosis , Neurodegenerative Diseases , Humans , Cytokines , Immunomodulation
3.
Environ Sci Pollut Res Int ; 24(13): 12261-12272, 2017 May.
Article in English | MEDLINE | ID: mdl-28357789

ABSTRACT

Morphological and biochemical responses of feverfew plants exposed to low (5 µM) and high (35 and 70 µM) levels of Cd or Cu were investigated. Increasing metal supply notably reduced the plant biomass. Elevated Cd and Cu levels also resulted in an increase in the leaf proline content. Besides, decrease in ascorbic acid (AsA) and glutathione (GSH) contents was similar in the leaves of Cd- and Cu-treated plants, indicating altered biosynthesis of AsA and GSH under metal excess. High metal doses stimulated increase in antioxidative enzyme activities that could be related to elevated hydrogen peroxide (H2O2) content and subsequent lipid peroxidation. Cd was typically more accumulated in shoots and roots than Cu, leading to higher translocation factor at high Cd doses. In terms of essential oil content, it seems that Cd had an inhibitory effect during the experiment, whereas Cu was found to stimulate it only at 5 µM. Furthermore, high Cd supply enhanced the relative proportion of monoterpene hydrocarbons, while Cu increased the proportion of sesquiterpenes, especially at 5 µM. This result provides the first evidence of the response of feverfew plants to Cd or Cu by associating stress-related responses with changes in terpenoids.


Subject(s)
Cadmium/metabolism , Copper/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Plant Roots/metabolism , Tanacetum parthenium , Terpenes/metabolism
4.
Molecules ; 21(9)2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27618000

ABSTRACT

Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV-B treated leaves presented the highest DPPH activity and antiproliferative activity with a half-maximal inhibitory concentration (IC50) value of 56.0 and 40.8 µg/mL, respectively, over that of the control plants (78.0 and 58.2 µg/mL, respectively). These observations suggest that post-harvest irradiation with UV-B can be considered a promising technique to improve the healthy-nutritional and pharmaceutical properties of sweet basil leaves.


Subject(s)
Antioxidants , Cell Proliferation/drug effects , Flavonoids , Hydroxybenzoates , Ocimum basilicum/chemistry , Plant Leaves/chemistry , Ultraviolet Rays , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Female , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...