Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biochemistry (Mosc) ; 86(3): 243-247, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33838626

ABSTRACT

Many viruses, beside binding to their main cell target, interact with other molecules that promote virus adhesion to the cell; often, these additional targets are glycans. The main receptor for SARS-CoV-2 is a peptide motif in the ACE2 protein. We studied interaction of the recombinant SARS-CoV-2 spike (S) protein with an array of glycoconjugates, including various sialylated, sulfated, and other glycans, and found that the S protein binds some (but not all) glycans of the lactosamine family. We suggest that parallel influenza infection will promote SARS-CoV-2 adhesion to the respiratory epithelial cells due to the unmasking of lactosamine chains by the influenza virus neuraminidase.


Subject(s)
Amino Sugars/metabolism , COVID-19/metabolism , COVID-19/virology , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Sugars/chemistry , Carbohydrate Sequence , Humans , In Vitro Techniques , Models, Molecular , Polysaccharides/chemistry , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
2.
Carbohydr Res ; 498: 108192, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33221663

ABSTRACT

The traditionally used strategy for the synthesis of blood group A and B tetrasaccharides includes 2'-O-fucosylation of lactosamine followed by insertion of an α1-3 linked N-acetylgalactosamine or a galactose moiety. Here, we report the synthesis of 3-aminopropyl glycosides of A (type 2) and B (type 2) tetrasaccharides via an alternative sequence, i.e. α-galactosaminylation (or α-galactosylation) followed by α-fucosylation. This strategy allows us to synthesize fucose-free trisaccharides GalNAcα1-3Galß1-4GlcNAc and Galα1-3Galß1-4GlcNAc, which are promising targets for immunotherapy utilising human natural antibodies against the trisaccharides. The key stage in this scheme was the selective chloroacetylation of the 2'-OH group of ßGal in the intermediate trisaccharides having the second (3-OH) unprotected group.The protocol is suitable for multigram syntheses and its further scaling up.


Subject(s)
ABO Blood-Group System/chemistry , Fucose/metabolism , Oligosaccharides/chemical synthesis , Oligosaccharides/metabolism , Chemistry Techniques, Synthetic , Glycosylation , Humans
3.
Glycoconj J ; 37(1): 129-138, 2020 02.
Article in English | MEDLINE | ID: mdl-31834559

ABSTRACT

Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-"vector" it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1-3(Manα1-6)Manß1-4GlcNAcß1-4GlcNAcß bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1-3Galß (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.


Subject(s)
Dendritic Cells/metabolism , Polysaccharides/metabolism , Animals , Humans , Lectins/metabolism , Male , Mice , Mice, Inbred BALB C , Polysaccharides/chemistry , Protein Binding , THP-1 Cells
4.
Virology ; 522: 37-45, 2018 09.
Article in English | MEDLINE | ID: mdl-30014856

ABSTRACT

Ducks, gulls and shorebirds represent the major hosts of influenza A viruses (IAVs) in nature, but distinctions of IAVs in different birds are not well defined. Here we characterized the receptor specificity of gull IAVs with HA subtypes H4, H6, H14, H13 and H16 using synthetic sialylglycopolymers. In contrast to duck IAVs, gull IAVs efficiently bound to fucosylated receptors and often preferred sulfated and non-sulfated receptors with Galß1-4GlcNAc cores over the counterparts with Galß1-3GlcNAc cores. Unlike all other IAVs of aquatic birds, H16 IAVs showed efficient binding to Neu5Acα2-6Gal-containing receptors and bound poorly to Neu5Acα2-3Galß1-3-terminated (duck-type) receptors. Analysis of HA crystal structures and amino acid sequences suggested that the amino acid at position 222 is an important determinant of the receptor specificity of IAVs and that transmission of duck viruses to gulls and shorebirds is commonly accompanied by substitutions at this position.


Subject(s)
Charadriiformes/virology , Influenza A virus/isolation & purification , Influenza A virus/physiology , Influenza in Birds/virology , Oligosaccharides/metabolism , Receptors, Virus/metabolism , Virus Attachment , Amino Acid Sequence , Animals , Binding Sites , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Models, Molecular , Oligosaccharides/chemistry , Protein Conformation , Receptors, Virus/chemistry
5.
Glycoconj J ; 35(2): 191-203, 2018 04.
Article in English | MEDLINE | ID: mdl-29388006

ABSTRACT

Dendritic cells (DCs) play crucial roles in innate and adaptive immune response, for which reason targeting antigen to these cells is an important strategy for improvement of vaccine development. To this end, we explored recognition of DCs lectins by glycans. For selection of the glycan "vector", a library of 229 fluorescent glycoprobes was employed to assess interaction with the CD14low/-CD16+CD83+ blood mononuclear cell population containing the DCs known for their importance in antigen presentation to T-lymphocytes. It was found that: 1) the glycan-binding profiles of this CD14low/-CD16+CD83+ subpopulation were similar but not identical to DCs of monocyte origin (moDCs); 2) the highest percentage of probe-positive cells in this CD14 low/-CD16+CD83+ subpopulation was observed for GalNAcα1-2Galß (Adi), (Neu5Acα)3 and three mannose-reach glycans; 3) subpopulation of CD14low/-CD16+ cells preferentially bound 4'-O-Su-LacdiNAc. Considering the published data on specificity of DCs binding, the glycans showing particular selectivity for the CD14 low/-CD16+CD83+ cells are likely interacting with macrophage galactose binding lectin (MGL), siglec-7 and dectin-2. In contrast, DC-SIGN is not apparently involved, even in case of mannose-rich glycans. Taking into consideration potential in vivo competition between glycan "vectors" and glycans within glycocalyx, attempting to target vaccine to DCs glycan-binding receptors should focus on Adi and (Neu5Acα)3 as the most promising vectors.


Subject(s)
Dendritic Cells/metabolism , Lectins/metabolism , Monocytes/metabolism , Polysaccharides/metabolism , Humans , Lectins/chemistry , Protein Binding
6.
Carbohydr Res ; 435: 83-96, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27721143

ABSTRACT

Seven lipophilic constructs containing Lewis (Lea, Leb, Ley) or chimeric Lewis/ABH (ALeb, BLeb, ALey, BLey) glycans were obtained starting from corresponding oligosaccharides in form of 3-aminopropyl glycosides. ALeb and BLeb pentasaccharides were synthesized via [3 + 1] blockwise approach. The constructs (neoglycolipids, or FSLs) were inserted in erythrocyte membrane, and obtained "kodecytes" were used to map the immunochemical specificity of historical and contemporary monoclonal and polyclonal blood group system Lewis reagents.


Subject(s)
Lewis Blood Group Antigens/chemistry , Polysaccharides/chemical synthesis , Polysaccharides/immunology , Antibodies, Monoclonal/metabolism , Erythrocyte Membrane/immunology , Humans , Lewis Blood Group Antigens/immunology , Molecular Structure , Polysaccharides/chemistry
7.
Glycobiology ; 25(7): 726-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25681326

ABSTRACT

A major aspect of carbohydrate-dependent galectin functionality is their cross-linking capacity. Using a cell surface as biorelevant platform for galectin binding and a panel of 40 glycans as sensor part of a fluorescent polyacrylamide neoglycopolymer for profiling galectin reactivity, properties of related proteins can be comparatively analyzed. The group of the chicken galectins (CGs) is an especially suited system toward this end due to its relatively small size, compared with mammalian galectins. The experiments reveal particularly strong reactivity toward N-acetyllactosamine repeats for all tested CGs and shared reactivity of CG-1A and CG-2 to histo-blood group ABH determinants. In cross-species comparison, CG-1B's properties closely resembled those of human galectin-1, as was the case for the galectin-2 (but not galectin-3) ortholog pair. Although binding-site architectures are rather similar, reactivity patterns can well differ.


Subject(s)
Glycoconjugates/metabolism , Lectins/metabolism , Polysaccharides/metabolism , Amino Acid Sequence , Animals , Carbohydrate Sequence , Cell Line , Chickens , Glycoconjugates/chemistry , Humans , Lectins/chemistry , Molecular Sequence Data , Polysaccharides/chemistry , Sequence Homology, Amino Acid
8.
Glycobiology ; 22(9): 1207-17, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22547138

ABSTRACT

Adhesion/growth-regulatory galectins (gals) exert their functionality by the cis/trans-cross-linking of distinct glycans after initial one-point binding. In order to define the specificity of ensuing association events leading to cross-linking, we recently established a cell-based assay using fluorescent glycoconjugates as flow cytometry probes and tested it on two human gals (gal-1 and -3). Here we present a systematic study of tandem-repeat-type gal-4, -8 and -9 loaded on Raji cells resulting in the following key insights: (i) all three gals bound to oligolactosamines; (ii) binding to ligands with Galß1-3GlcNAc or Galß1-3GalNAc as basic motifs was commonly better than that to canonical Galß1-4GlcNAc; (iii) all three gals bound to 3'-O-sulfated and 3'-sialylated disaccharides mentioned above better than that to parental neutral forms and (iv) histo-blood group ABH antigens were the highest affinity ligands in both the cell and the solid-phase assay. Fine specificity differences were revealed as follows: (i) gal-8 and -9, but not gal-4, bound to disaccharide Galß1-3GlcNAc; (ii) increase in binding due to negatively charged substituents was marked only in the case of gal-4 and (iii) gal-4 and -8 bound preferably to histo-blood group A glycans, whereas gal-9 targeted B-type glycans. Experiments with single carbohydrate recognition domains (CRDs) of gal-4 showed that the C-CRD preferably bound to ABH glycans, whereas the N-CRD associated with oligolactosamines. In summary, the comparative analysis disclosed the characteristic profiles of glycan reactivity for the accessible CRD of cell-bound gals. These results indicate the distinct sets of functionality for these three members of the same subgroup of human gals.


Subject(s)
Amino Sugars/chemistry , B-Lymphocytes/chemistry , Galectin 4/chemistry , Galectins/chemistry , Polysaccharides/chemistry , ABO Blood-Group System/chemistry , ABO Blood-Group System/metabolism , Amino Sugars/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Binding Sites , Biological Assay , Carbohydrate Sequence , Cell Line , Fluorescent Dyes , Galectin 4/metabolism , Galectins/metabolism , Glycoconjugates/chemistry , Glycoconjugates/metabolism , Humans , Molecular Sequence Data , Polysaccharides/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Static Electricity
9.
Virol J ; 5: 85, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18652681

ABSTRACT

BACKGROUND: Influenza A viruses of domestic birds originate from the natural reservoir in aquatic birds as a result of interspecies transmission and adaptation to new host species. We previously noticed that influenza viruses isolated from distinct orders of aquatic and terrestrial birds may differ in their fine receptor-binding specificity by recognizing the structure of the inner parts of Neu5Ac alpha 2-3Gal-terminated sialyloligosaccharide receptors. To further characterize these differences, we studied receptor-binding properties of a large panel of influenza A viruses from wild aquatic birds, poultry, pigs and horses. RESULTS: Using a competitive solid-phase binding assay, we determined viral binding to polymeric conjugates of sialyloligosaccharides differing by the type of Neu5Ac alpha-Gal linkage and by the structure of the more distant parts of the oligosaccharide chain. Influenza viruses isolated from terrestrial poultry differed from duck viruses by an enhanced binding to sulfated and/or fucosylated Neu5Ac alpha 2-3Gal-containing sialyloligosaccharides. Most of the poultry viruses tested shared a high binding affinity for the 6-sulfo sialyl Lewis X (Su-SLex). Efficient binding of poultry viruses to Su-SLex was often accompanied by their ability to bind to Neu5Ac alpha 2-6Gal-terminated (human-type) receptors. Such a dual receptor-binding specificity was demonstrated for the North American and Eurasian H7 viruses, H9N2 Eurasian poultry viruses, and H1, H3 and H9 avian-like virus isolates from pigs. CONCLUSION: Influenza viruses of terrestrial poultry differ from ancestral duck viruses by enhanced binding to sulfated and/or fucosylated Neu5Ac alpha 2-3Gal-terminated receptors and, occasionally, by the ability to bind to Neu5Ac alpha 2-6Gal-terminated (human-type) receptors. These findings suggest that the adaptation to receptors in poultry can enhance the potential of an avian virus for avian-to-human transmission and pandemic spread.


Subject(s)
Influenza A virus/chemistry , Influenza A virus/metabolism , Orthomyxoviridae Infections/veterinary , Receptors, Cell Surface/chemistry , Receptors, Virus/chemistry , Amino Acid Sequence , Animals , Birds , Chick Embryo , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Horses , Host-Pathogen Interactions , Humans , Influenza A virus/isolation & purification , Models, Molecular , Molecular Sequence Data , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Protein Binding , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Sequence Alignment , Swine
10.
Glycobiology ; 18(4): 315-24, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18256179

ABSTRACT

The involvement of galectins as pleiotropic regulators of cell adhesion and growth in disease progression explains the interest to define their ligand-binding properties. Toward this end, it is desirable to approach in vivo conditions to attain medical relevance. In order to simulate physiological conditions with cell surface glycans as recognition sites and galectins as mediators of intercellular contacts we developed an assay using galectin-loaded Raji cells. The extent of surface binding of fluorescent neoglycoconjugates depended on the lectin presence and the type of lectin, the nature of the probes' carbohydrate headgroup and the density of unsubstituted beta-galactosides on the cell surface. Using the most frequently studied galectins-1 and -3, application of this assay led to rather equal binding levels for linear and branched oligomers of N-acetyllactosamine. A clear preference of galectin-3 for alpha1-3-linked galactosylated lactosamine was noted. In parallel, a panel of 24 neoglycoconjugates was tested as inhibitors of galectin binding from solution to N-glycans of surface-immobilized asialofetuin. These two assays differ in presentation of the galectin and ligand, facilitating identification of assay-dependent properties. Under the condition of the cell assay, selectivity among oligosaccharides for the lectins was higher, and extraordinary affinity of galectin-1 to 3'-O-sulfated probes in a solid-phase assay was lost in the cell assay. Having introduced and validated a cell assay, the comprehensive profiling of ligand binding to cell-surface-presented galectins is made possible.


Subject(s)
Clinical Laboratory Techniques , Galectin 1/metabolism , Galectin 3/metabolism , Galectins/metabolism , Glycoproteins/metabolism , Binding Sites , Carbohydrate Sequence , Cells, Cultured , Flow Cytometry , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Galectin 1/chemistry , Galectin 3/chemistry , Galectins/chemistry , Galectins/pharmacology , Glycoproteins/chemistry , Humans , Lectins/chemistry , Lectins/metabolism , Membrane Glycoproteins/metabolism , Protein Binding , Substrate Specificity
11.
Virus Res ; 114(1-2): 15-22, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15996787

ABSTRACT

To study the receptor specificities of H1 and H3 influenza viruses isolated recently from pigs, we employed the analogues of natural receptors, namely sialyloligosaccharides conjugated with polyacrylamide in biotinylated and label free forms. All Madin-Darby canine kidney (MDCK) cell-propagated viruses with human H3 or classical swine H1 hemagglutinins bound only to Neu5Acalpha2-6Galbeta1-bearing polymers, and not to Neu5Acalpha2-3Galbeta1-bearing polymers. This receptor-binding pattern is typical for human influenza viruses and it differs from the previously described receptor-binding specificity of egg-adapted swine influenza viruses. Swine virus isolates with avian-like H1 and H3 hemagglutinins displayed distinct receptor specificity by binding to both Neu5Acalpha2-6Gal- and Neu5Acalpha2-3Gal-containing receptors. These viruses, as well as egg-adapted swine and turkey viruses with a classical swine HA, differed from the related duck viruses by increased affinity to sulfated sialyloligosaccaride, Su-SiaLe(x). Except for avian-like H3 viruses, none of the studied swine viruses bound to Neu5Gc-containing sialoglycopolymers, suggesting that binding to these sialic acid species abundantly expressed in pigs may not be essential for virus replication in this host.


Subject(s)
Influenza A virus/growth & development , Influenza A virus/metabolism , Kidney/virology , Receptors, Virus/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Dogs , Hemagglutinins, Viral/metabolism , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A virus/isolation & purification , Kidney/cytology , Lactose/analogs & derivatives , Lactose/metabolism , Models, Molecular , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...