Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(25): 41979-41986, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087582

ABSTRACT

We present a mode-locked semiconductor laser oscillator that emits few picosecond pulses (5-8ps at a repetition rate of 379MHz and wavelength of 1064nm) with record peak power (112W) and pulse energy (0.5nJ) directly out of the oscillator (with no amplifier). To achieve this high power performance we employ a high-current broad-area, spatially multi-mode diode amplifier (0.3×5mm), placed in an external cavity that enforces oscillation in a single spatial mode. Consequently, the brightness of the beam is near-ideal (M2 = 1.3). Mode locking is achieved by dividing the large diode chip (edge emitter) into two sections with independent electrical control: one large section for gain and another small section for a saturable absorber. Precise tuning of the reverse voltage on the absorber section allows to tune the saturation level and recovery time of the absorber, providing a convenient knob to optimize the mode-locking performance for various cavity conditions.

2.
Opt Express ; 31(6): 9264-9274, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157499

ABSTRACT

The coherent dynamics in networks of coupled oscillators is of great interest in wave-physics since the coupling produces various dynamical effects, such as coherent energy exchange (beats) between the oscillators. However, it is common wisdom that these coherent dynamics are transients that quickly decay in active oscillators (e.g. lasers) since pump saturation causes mode competition that results, for homogeneous gain, in the prevalence of the single winning mode. We observe that pump saturation in coupled parametric oscillators counter-intuitively encourages the multi-mode dynamics of beating and indefinitely preserves it, despite the existence of mode competition. We explore in detail the coherent dynamics of a pair of coupled parametric oscillators with a shared pump and arbitrary coupling in a radio frequency (RF) experiment, as well as in simulation. Specifically, we realize two parametric oscillators as different frequency-modes of a single RF cavity and couple them arbitrarily using a digital high-bandwidth FPGA. We observe persistent coherent beats that are maintained at any pump level, even high above the threshold. The simulation highlights how the interplay of pump depletion between the two oscillators prevents them from synchronizing, even when the oscillation is deeply saturated.

3.
Sci Rep ; 12(1): 14874, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050413

ABSTRACT

Dissipative solitons are fundamental wave-pulses that preserve their form in the presence of periodic loss and gain. The canonical realization of dissipative solitons is Kerr-lens mode locking in lasers, which delicately balance nonlinear and linear propagation in both time and space to generate ultrashort optical pulses. This linear-nonlinear balance dictates a unique pulse energy, which cannot be increased (say by elevated pumping), indicating that excess energy is expected to be radiated in the form of dispersive or diffractive waves. Here we show that Kerr-lens mode-locked lasers can overcome this expectation. Specifically, by breaking the spatial symmetry between the forward and backward halves of the round-trip in a linear cavity, the laser can modify the soliton in space to incorporate the excess energy. Increasing the pump power leads therefore to a different soliton solution, rather than to dispersive/diffractive loss. We predict this symmetry breaking by a complete numerical simulation of the spatio-temporal dynamics in the cavity, and confirm it experimentally in a Kerr-lens mode-locked Ti:Sapphire laser with quantitative agreement to the simulation. The simulation opens a window to directly observe the nonlinear space-time dynamics that molds the soliton pulse, and possibly to optimize it.

4.
Phys Rev Lett ; 127(17): 173603, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739301

ABSTRACT

We analyze theoretically and experimentally cases of asymmetric detection, stimulation, and loss within a quantum nonlinear interferometer of entangled pairs. We show that the visibility of the SU(1,1) interference directly discerns between loss on the measured mode (signal) and the conjugated mode (idler). This asymmetry also affects the phase sensitivity of the interferometer, where coherent seeding is shown to mitigate losses that are suffered by the conjugated mode; therefore increasing the maximum threshold of loss that permits sub-shot-noise phase detection. Our findings can improve the performance of setups that rely on direct detection of entangled pairs, such as quantum interferometry and imaging with undetected photons.

5.
Opt Lett ; 46(7): 1530-1533, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33793478

ABSTRACT

Passive mode-locking relies critically on a saturable loss mechanism to form ultrashort pulses. However, in Kerr-lens mode-locking (KLM), no actual absorption takes place, but rather losses appear due to diffraction, and actual light must escape the cavity. The Kerr-lens effect works to generate through diffraction an effective instantaneous saturable absorber that depends delicately on the interplay between the spatial and temporal profiles of the pulse. Despite the importance of KLM as a technique for generating ultrafast pulses and the fundamental role of diffraction losses in its operation, these losses have never been observed directly. Here, we measure the light that leaks out due to diffraction losses in a hard-aperture Kerr-lens mode-locked Ti:sapphire laser, and compare the measured results with a numerical theory that explicitly calculates the spatiotemporal behavior of the pulse.

6.
Phys Rev Lett ; 126(14): 143901, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891458

ABSTRACT

We study large networks of parametric oscillators as heuristic solvers of random Ising models. In these networks, known as coherent Ising machines, the model to be solved is encoded in the coupling between the oscillators, and a solution is offered by the steady state of the network. This approach relies on the assumption that mode competition steers the network to the ground-state solution of the Ising model. By considering a broad family of frustrated Ising models, we show that the most efficient mode does not correspond generically to the ground state of the Ising model. We infer that networks of parametric oscillators close to threshold are intrinsically not Ising solvers. Nevertheless, the network can find the correct solution if the oscillators are driven sufficiently above threshold, in a regime where nonlinearities play a predominant role. We find that for all probed instances of the model, the network converges to the ground state of the Ising model with a finite probability.

7.
Phys Rev Lett ; 126(8): 083601, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33709724

ABSTRACT

Mode locking in lasers is a collective effect, where due to a weak coupling a large number of frequency modes lock their phases to oscillate in unison, forming an ultrashort pulse in time. We demonstrate an analogous collective effect in coupled parametric oscillators, which we term "pairwise mode locking," where many pairs of modes with twin frequencies (symmetric around the center carrier) oscillate simultaneously with a locked phase sum, while the phases of individual modes remain undefined. Thus, despite being broadband and multimode, the emission is not pulsed and lacks first-order coherence, while possessing a very high degree of second-order coherence. Our configuration comprises two coupled parametric oscillators within identical multimode cavities, where the coupling between the oscillators is modulated in time at the repetition rate of the cavity modes, with some analogy to active mode locking in lasers. We demonstrate pairwise mode locking in a radio-frequency experiment, covering over an octave of bandwidth with approximately 20 resonant mode-locked pairs, filling most of the available bandwidth between dc and the pump frequency. We accompany our experiment with an analytic model that accounts for the properties of the coupled parametric oscillators near threshold.

8.
Phys Rev Lett ; 123(8): 083901, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31491203

ABSTRACT

Coupled parametric oscillators were recently employed as simulators of artificial Ising networks, with the potential to solve computationally hard minimization problems. We demonstrate a new dynamical regime within the simplest network-two coupled parametric oscillators, where the oscillators never reach a steady state, but show persistent, full-scale, coherent beats, whose frequency reflects the coupling properties and strength. We present a detailed theoretical and experimental study and show that this new dynamical regime appears over a wide range of parameters near the oscillation threshold and depends on the nature of the coupling (dissipative or energy preserving). Thus, a system of coupled parametric oscillators transcends the Ising description and manifests unique coherent dynamics, which may have important implications for coherent computation machines.

9.
Nat Commun ; 9(1): 609, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426909

ABSTRACT

Homodyne measurement is a corner-stone method of quantum optics that measures the quadratures of light-the quantum optical analog of the canonical position and momentum. Standard homodyne, however, suffers from a severe bandwidth limitation: while the bandwidth of optical states can span many THz, standard homodyne is inherently limited to the electronically accessible MHz-to-GHz range, leaving a dramatic gap between relevant optical phenomena and the measurement capability. We demonstrate a fully parallel optical homodyne measurement across an arbitrary optical bandwidth, effectively lifting this bandwidth limitation completely. Using optical parametric amplification, which amplifies one quadrature while attenuating the other, we measure quadrature squeezing of 1.7 dB simultaneously across 55 THz, using the pump as the only local oscillator. As opposed to standard homodyne, our measurement is robust to detection inefficiency, and was obtained with >50% detection loss. Broadband parametric homodyne opens a wide window for parallel processing of quantum information.

10.
Opt Express ; 24(25): 28239-28246, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958535

ABSTRACT

We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 µs.

11.
Phys Rev Lett ; 116(7): 073603, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26943535

ABSTRACT

Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

12.
Phys Rev Lett ; 114(6): 063902, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25723221

ABSTRACT

A key question of quantum optics is how nonclassical biphoton correlations at low power evolve into classical coherence at high power. Direct observation of the crossover from quantum to classical behavior is desirable, but difficult due to the lack of adequate experimental techniques that cover the ultrawide dynamic range in photon flux from the single photon regime to the classical level. We investigate biphoton correlations within the spectrum of light generated by broadband four-wave mixing over a large dynamic range of ∼80 dB in photon flux across the classical-to-quantum transition using a two-photon interference effect that distinguishes between classical and quantum behavior. We explore the quantum-classical nature of the light by observing the interference contrast dependence on internal loss and demonstrate quantum collapse and revival of the interference when the four-wave mixing gain in the fiber becomes imaginary.

13.
Opt Express ; 21(16): 19040-6, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938819

ABSTRACT

We explore mode locked operation of a Ti:Sapphire laser with enhanced Kerr nonlinearity, where the threshold for pulsed operation can be continuously tuned down to the threshold for continuous-wave (CW) operation, and even below it. At the point of equality, even though a CW solution does not exist, pulsed oscillation can be realized directly from zero CW oscillation. We experimentally investigate the evolution of the mode locking mechanism towards this point and beyond it, and provide a qualitative theoretical model to explain the results.

14.
Opt Express ; 20(9): 9991-8, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22535091

ABSTRACT

The gain properties of an oscillator strongly affect its behavior. When the gain is homogeneous, different modes compete for gain resources in a 'winner takes all' manner, whereas with inhomogeneous gain, modes can coexist if they utilize different gain resources. We demonstrate precise control over the mode competition in a mode locked Ti:sapphire oscillator by manipulation and spectral shaping of the gain properties, thus steering the competition towards a desired, otherwise inaccessible, oscillation. Specifically, by adding a small amount of spectrally shaped inhomogeneous gain to the standard homogeneous gain oscillator, we selectively enhance a desired two-color oscillation, which is inherently unstable to mode competition and could not exist in a purely homogeneous gain oscillator. By tuning the parameters of the additional inhomogeneous gain we flexibly control the center wavelengths, relative intensities and widths of the two colors.


Subject(s)
Amplifiers, Electronic , Lasers , Oscillometry/instrumentation , Aluminum Oxide , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Feedback
15.
Phys Rev Lett ; 101(2): 023601, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18764181

ABSTRACT

We propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses, thus forming a generalized adiabatic passage via a wave packet. We study piecewise stimulated Raman adiabatic passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possible.

16.
Phys Rev Lett ; 100(20): 203001, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518527

ABSTRACT

We present experiments demonstrating high-resolution and wide-bandwidth coherent control of a four-level atomic system in a diamond configuration. A femtosecond frequency comb is used to excite a specific pair of two-photon transitions in cold 87Rb. The optical-phase-sensitive response of the closed-loop diamond system is studied by controlling the phase of the comb modes with a pulse shaper. Finally, the pulse shape is optimized resulting in a 256% increase in the two-photon transition rate by forcing constructive interference between the mode pairs detuned from an intermediate resonance.

17.
Phys Rev Lett ; 98(11): 113004, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17501050

ABSTRACT

We present a general and highly efficient scheme for performing narrow-band Raman transitions between molecular vibrational levels using a coherent train of weak pump-dump pairs of shaped ultrashort pulses. The use of weak pulses permits an analytic description within the framework of coherent control in the perturbative regime, while coherent accumulation of many pulse pairs enables near unity transfer efficiency with a high spectral selectivity, thus forming a powerful combination of pump-dump control schemes and the precision of the frequency comb. Simulations verify the feasibility and robustness of this concept, with the aim to form deeply bound, ultracold molecules.

18.
Opt Express ; 15(14): 8760-9, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-19547211

ABSTRACT

We describe a novel non-linear detection method for optical tomography that does not rely on detection of interference fringes and is free of optical background. The method exploits temporally coherent broadband illumination such as ultrashort pulses, and a non-linear two-photon detection process such as sum-frequency generation (SFG). At the detection stage, the reference beam and the sample beam are mixed in a thick non-linear crystal, and only the mixing term, which is free of optical background, is detected. Consequently, the noise limitations posed by the background in standard OCT (excess and shot noise), do not exist here. Due to the non-linearity, the signal to noise ratio scales more favorably with the optical power compared to standard OCT, yielding an inherent improvement for high speed tomographic scans. Careful design of phase matching in the crystal enables non-linear mixing which is both highly efficient and broadband, yielding both high sensitivity and high depth resolution.

19.
Phys Rev Lett ; 94(4): 043602, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15783557

ABSTRACT

We experimentally demonstrate sum-frequency generation with entangled photon pairs, generating as many as 40,000 photons per second, visible even to the naked eye. The nonclassical nature of the interaction is exhibited by a linear intensity dependence of the nonlinear process. The key element in our scheme is the generation of an ultrahigh flux of entangled photons while maintaining their nonclassical properties. This is made possible by generating the down-converted photons as broadband as possible, orders of magnitude wider than the pump. This approach can be applied to other nonlinear interactions, and may become useful for various quantum-measurement tasks.

20.
Phys Rev Lett ; 94(7): 073601, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15783815

ABSTRACT

We experimentally demonstrate shaping of the two-photon wave function of entangled-photon pairs, utilizing coherent pulse-shaping techniques. By performing spectral-phase manipulations we tailor the second-order correlation function of the photons exactly like a coherent ultrashort pulse. To observe the shaping we perform sum-frequency generation with an ultrahigh flux of entangled photons. At the appropriate conditions, sum-frequency generation performs as a coincidence detector with an ultrashort response time (approximately 100 fs), enabling a direct observation of the two-photon wave function. This property also enables us to demonstrate background-free, high-visibility two-photon interference oscillations.

SELECTION OF CITATIONS
SEARCH DETAIL
...