Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Fish Shellfish Immunol ; 154: 109893, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260531

ABSTRACT

Piscirickettsia salmonis, the primary bacterial disease in Chilean salmon farming, necessitates a constant refinement of control strategies. This study hypothesized that the current vaccination strategy for SRS control in the Chilean Atlantic salmon aquaculture industry, which has been in place since 2017 (ALPHA JECT® 5.1 plus LiVac®), solely relies on vaccines formulated with the EM-90 genogroup of P. salmonis (PS-EM-90), triggering a partial cross-immunity response in fish infected with the LF-89 genogroup (PS-LF-89). Relative Percent Survival (RPS) and cell-mediated immune (CMI) response were evaluated in Atlantic salmon post-smolts vaccinated with the standard vaccination strategy but challenged with both PS-EM-90 and PS-LF-89, in addition to other vaccination strategies considering primo vaccination and booster with other commercial vaccines and the possible enhancing effects of the combination with a natural immunomodulator (PAQ-Xtract®) administered orally. The intraperitoneal (I.P.) challenge was performed after 2395°-days (DD) after the start of the immunostimulant delivery, 1905 DD after the primo vaccination, and 1455 DD after the booster vaccination. Unvaccinated fish showed 73.6 and 41.7 % mortality when challenged with PS-EM-90 and PS-LF-89, respectively. Fish infected with PS-LF-89 died significantly faster (21 days post-infection, dpi) than fish challenged with PS-EM-90 (28 dpi) (p = 0.0043) and had a higher probability of death (0.4626) than fish challenged with PS-EM-90. RPS had a significant positive correlation with the PS-EM-90 load of the P. salmonis genogroup (r = 0.540, p < 0.01) but not with the PS-LF-89 load (r = 0.155, p > 0.05). This demonstrated that the immunization strategies were more effective in lowering PS-EM-90 loads, resulting in higher survival rates in fish challenged with PS-EM-90. The current industry vaccination strategy recorded a 100 % RPS when fish were challenged with PS-EM-90, but the RPS dropped significantly to 77 % when fish were challenged with PS-LF-89, meaning that the strategy did not show complete cross-protection. But after adding PAQ-Xtract®, the RPS improved from 77 % to 92 % in fish that were vaccinated with the standard method but then challenged with PS-LF-89. The most effective vaccination strategy was based on LiVac® as primo vaccination and ALPHA JECT® 5.1 plus LiVac® as booster vaccination, with or without PAQ-Xtract®, in both PS-EM-90 (100 %) and PS-LF-89 (96 %) challenged fish. The serum concentration of anti-P. salmonis IgM did not show a correlation with the protection of immunization strategies expressed in survival. Low serum IL-12 and high serum IFNγ concentrations showed a correlation with higher bacterial loads and lower survival. Aggregate analysis showed a significant correlation between higher numbers of CD8+ cells in the head-kidney, higher fish survival, and a lower bacterial load. The immunization strategies were safe for fish and induced only mild microscopic lesions in the gut. Taken together, our results help to better understand the biological interaction between P. salmonis and post-smolt vaccinated Atlantic salmon to deepen the knowledge on vaccine-induced protection, CMI immune response, and cross-immunity applied to improve the current immunization strategy for SRS control in the Chilean salmon industry.

2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273372

ABSTRACT

The mechanisms underlying severe allergic asthma are complex and unknown, meaning it is a challenge to provide the most appropriate treatment. This study aimed to identify novel biomarkers for stratifying allergic asthmatic patients according to severity, and to uncover the biological mechanisms that lead to the development of the severe uncontrolled phenotype. By using miRNA PCR panels, we analyzed the expression of 752 miRNAs in serum samples from control subjects (n = 15) and mild (n = 11) and severe uncontrolled (n = 10) allergic asthmatic patients. We identified 40 differentially expressed miRNAs between severe uncontrolled and mild allergic asthmatic patients. Functional enrichment analysis revealed signatures related to inflammation, angiogenesis, lipid metabolism and mRNA regulation. A random forest classifier trained with DE miRNAs achieved a high accuracy of 97% for severe uncontrolled patient stratification. Validation of the identified biomarkers was performed on a subset of allergic asthmatic patients from the CAMP cohort at Brigham and Women's Hospital, Harvard Medical School. Four of these miRNAs (hsa-miR-99b-5p, hsa-miR-451a, hsa-miR-326 and hsa-miR-505-3p) were validated, pointing towards their potential as biomarkers for stratifying allergic asthmatic patients by severity and providing insights into severe uncontrolled asthma molecular pathways.


Subject(s)
Asthma , Biomarkers , Inflammation , Lipid Metabolism , MicroRNAs , Severity of Illness Index , Humans , Asthma/genetics , Asthma/blood , Asthma/metabolism , MicroRNAs/genetics , MicroRNAs/blood , Female , Male , Lipid Metabolism/genetics , Adult , Biomarkers/blood , Inflammation/genetics , Inflammation/blood , Inflammation/metabolism , Middle Aged , Gene Expression Profiling , Gene Expression Regulation
3.
mBio ; 15(9): e0095624, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39105585

ABSTRACT

Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE: The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.


Subject(s)
Chemotaxis , Pseudomonas aeruginosa , Staphylococcus aureus , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/physiology , Staphylococcus aureus/drug effects , Microbial Interactions , Antibiosis , Anti-Bacterial Agents/pharmacology , Humans , Staphylococcal Infections/microbiology , Coculture Techniques , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/physiology , Hydroxyquinolines
4.
Front Public Health ; 12: 1384512, 2024.
Article in English | MEDLINE | ID: mdl-38903572

ABSTRACT

Background: Molecular epidemiology techniques allow us to track the HIV-1 transmission dynamics. Herein, we combined genetic, clinical and epidemiological data collected during routine clinical treatment to evaluate the dynamics and characteristics of transmission clusters of the most prevalent HIV-1 subtypes in the state of São Paulo, Brazil. Methods: This was a cross-sectional study conducted with 2,518 persons living with HIV (PLWH) from 53 cities in São Paulo state between Jan 2004 to Feb 2015. The phylogenetic tree of protease/reverse transcriptase (PR/RT) regions was reconstructed by PhyML and ClusterPicker used to infer the transmission clusters based on Shimodaira-Hasegawa (SH) greater than 90% (phylogenetic support) and genetic distance less than 6%. Results: Of a total of 2,518 sequences, 2,260 were pure subtypes at the PR/RT region, being B (88%), F1 (8.1%), and C (4%). About 21.2% were naïve with a transmitted drug resistance (TDR) rate of 11.8%. A total of 414 (18.3%) of the sequences clustered. These clusters were less evident in subtype B (17.7%) and F1 (15.1%) than in subtype C (40.2%). Clustered sequences were from PLWH at least 5 years younger than non-clustered among subtypes B (p < 0.001) and C (p = 0.037). Men who have sex with men (MSM) predominated the cluster in subtype B (51%), C (85.7%), and F1 (63.6%; p < 0.05). The TDR rate in clustered patients was 15.4, 13.6, and 3.1% for subtypes B, F1, and C, respectively. Most of the infections in subtypes B (80%), C (64%), and F1 (59%) occurred within the state of São Paulo. The metropolitan area of São Paulo presented a high level of endogenous clustering for subtypes B and C. The São Paulo city had 46% endogenous clusters of subtype C. Conclusion: Our findings showed that MSM, antiretroviral therapy in Treatment-Naive (ART-naïve) patients, and HIV1-C, played an important role in the HIV epidemic in the São Paulo state. Further studies in transmission clusters are needed to guide the prevention intervention.


Subject(s)
HIV Infections , HIV-1 , Phylogeny , Humans , Brazil/epidemiology , HIV-1/genetics , HIV-1/classification , Male , Cross-Sectional Studies , HIV Infections/epidemiology , HIV Infections/transmission , Adult , Female , Middle Aged , Molecular Epidemiology , Cluster Analysis , Young Adult , Adolescent , Drug Resistance, Viral/genetics
5.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38617332

ABSTRACT

Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.

6.
Clin Infect Dis ; 78(6): 1748-1756, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38478634

ABSTRACT

BACKGROUND: A next-generation Vero cell rabies vaccine (PVRV-NG2) was developed using the same Pitman-Moore strain as in the licensed purified Vero cell vaccine (PVRV; Verorab) and the human diploid cell vaccine (HDCV; Imovax Rabies®). METHODS: This dual-center, modified, double-blind, phase 3 study evaluated the immunogenic non-inferiority and safety of PVRV-NG2 with and without concomitant intramuscular human rabies immunoglobulin (HRIG) versus PVRV + HRIG and HDCV + HRIG in a simulated post-exposure prophylaxis (PEP) regimen. Healthy adults ≥18 years old (N = 640) were randomized 3:1:1:1 to PVRV-NG2 + HRIG, PVRV + HRIG, HDCV + HRIG, or PVRV-NG2 alone (administered as single vaccine injections on days [D] 0, D3, D7, D14, and 28, with HRIG on D0 in applicable groups). Rabies virus neutralizing antibodies (RVNA) titers were assessed pre- (D0) and post-vaccination (D14, D28, and D42) using the rapid fluorescent focus inhibition test. Non-inferiority, based on the proportion of participants achieving RVNA titers ≥0.5 IU/mL (primary objective), was demonstrated if the lower limit of the 95% CI of the difference in proportions between PVRV-NG2 + HRIG and PVRV + HRIG/HDCV + HRIG was >-5% at D28. Safety was assessed up to 6 months after the last injection. RESULTS: Non-inferiority of PVRV-NG2 + HRIG compared with PVRV + HRIG and HDCV + HRIG was demonstrated. Nearly all participants (99.6%, PVRV-NG2 + HRIG; 100%, PVRV + HRIG; 98.7%, HDCV + HRIG; 100%, PVRV-NG2 alone) achieved RVNA titers ≥0.5 IU/mL at D28. Geometric mean titers were similar between groups with concomitant HRIG administration at all time points. Safety profiles were similar between PVRV-NG2 and comparator vaccines. CONCLUSIONS: In a simulated PEP setting, PVRV-NG2 + HRIG showed comparable immunogenicity and safety to current standard-of-care vaccines. CLINICAL TRIALS REGISTRATION: NCT03965962.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Post-Exposure Prophylaxis , Rabies Vaccines , Rabies virus , Rabies , Humans , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Rabies Vaccines/adverse effects , Adult , Male , Rabies/prevention & control , Post-Exposure Prophylaxis/methods , Female , Antibodies, Viral/blood , Double-Blind Method , Middle Aged , Young Adult , Vero Cells , Antibodies, Neutralizing/blood , France , Rabies virus/immunology , Animals , Chlorocebus aethiops , Adolescent , Immunogenicity, Vaccine , Healthy Volunteers
7.
World J Microbiol Biotechnol ; 40(4): 121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441729

ABSTRACT

Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Kluyveromyces , Gene Expression Regulation , Kluyveromyces/genetics , Esters
8.
Virus Evol ; 10(1): veae009, 2024.
Article in English | MEDLINE | ID: mdl-38361827

ABSTRACT

Infection by hepatitis B virus (HBV) is responsible for approximately 296 million chronic cases of hepatitis B, and roughly 880,000 deaths annually. The global burden of HBV is distributed unevenly, largely owing to the heterogeneous geographic distribution of its subtypes, each of which demonstrates different severity and responsiveness to antiviral therapy. It is therefore crucial to the global public health response to HBV that the spatiotemporal spread of each genotype is well characterized. In this study, we describe a collection of 133 newly sequenced HBV strains from recent African immigrants upon their arrival in Belgium. We incorporate these sequences-all of which we determine to come from genotypes A, D, and E-into a large-scale phylogeographic study with genomes sampled across the globe. We focus on investigating the spatio-temporal processes shaping the evolutionary history of the three genotypes we observe. We incorporate several recently published ancient HBV genomes for genotypes A and D to aid our analysis. We show that different spatio-temporal processes underlie the A, D, and E genotypes with the former two having originated in southeastern Asia, after which they spread across the world. The HBV E genotype is estimated to have originated in Africa, after which it spread to Europe and the Americas. Our results highlight the use of phylogeographic reconstruction as a tool to understand the recent spatiotemporal dynamics of HBV, and highlight the importance of supporting vulnerable populations in accordance with the needs presented by specific HBV genotypes.

9.
Hum Vaccin Immunother ; 19(3): 2275453, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37921410

ABSTRACT

A serum-free, highly purified rabies vaccine produced in Vero cells is under development. The initial formulation, PVRV-NG, was evaluated in five Phase II studies and subsequently reformulated (PVRV-NG2). This multicenter, observer-blinded Phase II study investigated the safety and immune response of three different doses (antigen content) of PVRV-NG2 versus a licensed human diploid cell rabies vaccine (HDCV; Imovax rabies®). Healthy adults (N = 320) were randomized to receive PVRV-NG2 (low, medium, or high dose), PVRV-NG, or HDCV (2:2:2:1:1 ratio), according to a five-dose Essen simulated post-exposure regimen (Days [D] 0, 3, 7, 14, and 28). All participants received human rabies immunoglobulin intramuscularly on D0. Immunogenicity was assessed at D0, 14, 28, 42, and 6 months after the final injection using the rapid fluorescent focus inhibition test. Seroconversion rates were calculated as the percentage of participants achieving rabies virus neutralizing antibody titers ≥0.5 IU/mL. All analyses were descriptive. At each timepoint, geometric mean titers (GMTs) increased with antigen content (measured using an enzyme-linked immunosorbent assay). High-dose PVRV-NG2 GMTs were the highest at all timepoints, medium-dose PVRV-NG2 GMTs were similar to those with HDCV, and low-dose PVRV-NG2 GMTs were similar to PVRV-NG. The safety profile of PVRV-NG2 was comparable to PVRV-NG; however, fewer injection site reactions were reported with PVRV-NG2 or PVRV-NG (range 36.7-47.5%) than with HDCV (61.5%). This study demonstrated a dose-effect of antigen content at all timepoints. As post-exposure prophylaxis, the safety and immunogenicity profiles of the high-dose PVRV-NG2 group compared favorably with HDCV. Clinicaltrials.gov number: NCT03145766.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Animals , Chlorocebus aethiops , Humans , Adult , Rabies/prevention & control , Vero Cells , Antibodies, Viral
10.
Plants (Basel) ; 12(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37176813

ABSTRACT

The pharmacological properties of plants lie in the content of secondary metabolites that are classified into different categories based on their biosynthesis, structures, and functions. MicroRNAs (miRNAs) are small non-coding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling; however, information about their involvement in secondary metabolism is still limited. Cumin is one of the most popular seeds from the plant Cuminum cyminum, with extensive applications in herbal medicine and cooking; nevertheless, no previous studies focus on the miRNA profile of cumin. In this study, the miRNA profile of C. cyminum and its association with the biosynthesis of secondary metabolites were determined using NGS technology. The sequencing data yielded 10,956,054 distinct reads with lengths ranging from 16 to 40 nt, of which 349 miRNAs were found to be conserved and 39 to be novel miRNAs. Moreover, this work identified 1959 potential target genes for C. cyminum miRNAs. It is interesting to note that several conserved and novel miRNAs have been found to specifically target important terpenoid backbone, flavonoid biosynthesis, and lipid/fatty acid pathways enzymes. We believe this investigation will aid in elucidating the implications of miRNAs in plant secondary metabolism.

11.
Pathogens ; 12(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36986371

ABSTRACT

Piscirickettsiosis (SRS), caused by Piscirickettsia salmonis, is the main infectious disease that affects farmed Atlantic salmon in Chile. Currently, the official surveillance and control plan for SRS in Chile is based only on the detection of P. salmonis, but neither of its genogroups (LF-89-like and EM-90-like) are included. Surveillance at the genogroup level is essential not only for defining and evaluating the vaccination strategy against SRS, but it is also of utmost importance for early diagnosis, clinical prognosis in the field, treatment, and control of the disease. The objectives of this study were to characterize the spatio-temporal distribution of P. salmonis genogroups using genogroup-specific real-time probe-based polymerase chain reaction (qPCR) to discriminate between LF-89-like and EM-90-like within and between seawater farms, individual fish, and tissues/organs during early infection in Atlantic salmon under field conditions. The spatio-temporal distribution of LF-89-like and EM-90-like was shown to be highly variable within and between seawater farms. P. salmonis infection was also proven to be caused by both genogroups at farm, fish, and tissue levels. Our study demonstrated for the first time a complex co-infection by P. salmonis LF-89-like and EM-90-like in Atlantic salmon. Liver nodules (moderate and severe) were strongly associated with EM-90-like infection, but this phenotype was not detected by infection with LF-89-like or co-infection of both genogroups. The detection rate of P. salmonis LF-89-like increased significantly between 2017 and 2021 and was the most prevalent genogroup in Chilean salmon aquaculture during this period. Lastly, a novel strategy to identify P. salmonis genogroups based on novel genogroup-specific qPCR for LF-89-like and EM-90-like genogroups is suggested.

12.
Front Genet ; 14: 1137017, 2023.
Article in English | MEDLINE | ID: mdl-36896239

ABSTRACT

MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules capable of regulating gene expression at the post-transcriptional level either by translational inhibition or mRNA degradation and have recently been importantly related to the diagnosis and prognosis of the most relevant endocrine disorders. The endocrine system comprises various highly vascularized ductless organs regulating metabolism, growth and development, and sexual function. Endocrine disorders constitute the fifth principal cause of death worldwide, and they are considered a significant public health problem due to their long-term effects and negative impact on the patient's quality of life. Over the last few years, miRNAs have been discovered to regulate various biological processes associated with endocrine disorders, which could be advantageous in developing new diagnostic and therapeutic tools. The present review aims to provide an overview of the most recent and significant information regarding the regulatory mechanism of miRNAs during the development of the most relevant endocrine disorders, including diabetes mellitus, thyroid diseases, osteoporosis, pituitary tumors, Cushing's syndrome, adrenal insufficiency and multiple endocrine neoplasia, and their potential implications as disease biomarkers.

13.
bioRxiv ; 2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36747623

ABSTRACT

Coinfection with two notorious opportunistic pathogens, the Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus , dominates chronic pulmonary infections. While coinfection is associated with poor patient outcomes, the interspecies interactions responsible for such decline remain unknown. Here, we dissected molecular mechanisms of interspecies sensing between P. aeruginosa and S. aureus . We discovered that P. aeruginosa senses S. aureus secreted peptides and, counterintuitively, moves towards these toxins. P. aeruginosa tolerates such a strategy through "competition sensing", whereby it preempts imminent danger/competition by arming cells with type six secretion (T6S) and iron acquisition systems. Intriguingly, while T6S is predominantly described as weaponry targeting Gram-negative and eukaryotic cells, we find that T6S is essential for full P. aeruginosa competition with S. aureus , a previously undescribed role for T6S. Importantly, competition sensing was activated during coinfection of bronchial epithelia, including T6S islands targeting human cells. This study reveals critical insight into both interspecies competition and how antagonism may cause collateral damage to the host environment.

14.
Biology (Basel) ; 11(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36101444

ABSTRACT

The mission of veterinary clinical pathology is to support the diagnostic process by using tests to measure different blood biomarkers to support decision making about farmed fish health and welfare. The objective of this study is to provide reference intervals (RIs) for 44 key hematological, blood biochemistry, blood gasometry and hormones biomarkers for the three most economically important farmed salmonid species in Chile (Atlantic salmon, coho salmon and rainbow trout) during the freshwater (presmolt and smolt age range) and seawater stages (post-smolt and adult age range). Our results confirmed that the concentration or activity of most blood biomarkers depend on the salmonid species, age range and/or the interaction between them, and they are often biologically related to each other. Erythogram and leukogram profiles revealed a similar distribution in rainbow trout and coho salmon, but those in Atlantic salmon were significantly different. While the activity of the most clinically important plasma enzymes demonstrated a similar profile in Atlantic salmon and rainbow trout, coho salmon demonstrated a significantly different distribution. Plasma electrolyte and mineral profiles showed significant differences between salmonid species, especially for rainbow trout, while Atlantic salmon and coho salmon demonstrated a high degree of similarity. Furthermore, electrolytes, minerals and blood gasometry biomarkers were significantly different between age ranges, suggesting a considerably different distribution between freshwater and seawater-farmed fish. The RIs of clinically healthy fish described in this study take into account the high biological variation of farmed fish in Chile, as the 3.059 individuals came from 78 different fish farms, both freshwater and seawater, and blood samples were collected using the same pre-analytical protocol. Likewise, our study provides the Chilean salmon farming industry with standardized protocols that can be used routinely and provides valuable information to improve the preventive vision of aquamedicine through the application of blood biomarkers to support and optimize health, welfare and husbandry management in the salmon farming industry.

15.
J Med Chem ; 65(16): 10956-10974, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35948083

ABSTRACT

Spinal cord injuries (SCIs) irreversibly disrupt spinal connectivity, leading to permanent neurological disabilities. Current medical treatments for reducing the secondary damage that follows the initial injury are limited to surgical decompression and anti-inflammatory drugs, so there is a pressing need for new therapeutic strategies. Inhibition of the type 2 lysophosphatidic acid receptor (LPA2) has recently emerged as a new potential pharmacological approach to decrease SCI-associated damage. Toward validating this receptor as a target in SCI, we have developed a new series of LPA2 antagonists, among which compound 54 (UCM-14216) stands out as a potent and selective LPA2 receptor antagonist (Emax = 90%, IC50 = 1.9 µM, KD = 1.3 nM; inactive at LPA1,3-6 receptors). This compound shows efficacy in an in vivo mouse model of SCI in an LPA2-dependent manner, confirming the potential of LPA2 inhibition for providing a new alternative for treating SCI.


Subject(s)
Receptors, Lysophosphatidic Acid , Spinal Cord Injuries , Animals , Mice , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Spinal Cord , Spinal Cord Injuries/drug therapy
16.
Virus Evol ; 8(1): veac028, 2022.
Article in English | MEDLINE | ID: mdl-35712523

ABSTRACT

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV). HBV-D1 is the dominant subgenotype in the Mediterranean basin, Eastern Europe, and Asia. However, little is currently known about its evolutionary history and spatio-temporal dynamics. We use Bayesian phylodynamic inference to investigate the temporal history of HBV-D1, for which we calibrate the molecular clock using ancient sequences, and reconstruct the viral global spatial dynamics based, for the first time, on full-length publicly available HBV-D1 genomes from a wide range of sampling dates. We pinpoint the origin of HBV subgenotype D1 before the current era (BCE) in Turkey/Anatolia. The spatial reconstructions reveal global viral transmission with a high degree of mixing. By combining modern-day and ancient sequences, we ensure sufficient temporal signal in HBV-D1 data to enable Bayesian phylodynamic inference using a molecular clock for time calibration. Our results shed light on the worldwide HBV-D1 epidemics and suggest that this originally Middle Eastern virus significantly affects more distant countries, such as those in mainland Europe.

17.
BMJ Case Rep ; 15(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35606027

ABSTRACT

Globally, obstetric emergencies majorly account for maternal morbidity and mortality. Guerrero, Oaxaca and Chiapas accounted for more than 13% of maternal deaths in the country in 2021. Obstetric haemorrhage was the leading cause of maternal death after COVID-19 infection and hypertensive disorders. This case highlights the clinical course and social determinants of health that limited access to health services in a young woman with an obstetric emergency in rural southern Mexico. The case describes common challenges during an obstetric emergency in resource-poor settings, such as timely referral to a second level of care. Our analysis identifies the social determinants of health behind the slow and inadequate emergency response. Additionally, we present several interventions that can be implemented in low-resource settings for strengthening the response to obstetric emergencies at the primary and secondary levels of care.


Subject(s)
Abortion, Incomplete , Abortion, Spontaneous , COVID-19 , Emergencies , Female , Health Services , Health Services Accessibility , Humans , Mexico/epidemiology , Pregnancy , Pregnant Women
18.
Sci Rep ; 12(1): 6570, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449223

ABSTRACT

The World Health Organization protocol for rabies post-exposure prophylaxis (PEP) recommends extensive wound washing, immediate vaccination, and administration of rabies immunoglobulin (RIG) in severe category III exposures. Some studies have shown that RIG can interfere with rabies vaccine immunogenicity to some extent. We investigated the interference of RIG on a next generation highly purified Vero cell rabies vaccine candidate (PVRV-NG) versus standard-of-care vaccines in a previously described hamster model. The interference of either human (h) or equine (e) RIG on the immune response elicited by PVRV-NG, Verorab® (purified Vero cell rabies vaccine, PVRV), and Imovax® Rabies (human diploid cell rabies vaccine; HDCV) was evaluated using the 4-dose Essen PEP regimen. The anti-rabies seroneutralizing titers and specific serum IgM titers were measured by fluorescent antibody virus neutralization test and enzyme-linked immunosorbent assay, respectively, for the vaccines administered with or without RIG. The RIG interference on PVRV-NG, observed transiently at Day 7, was similar to that on PVRV and tended to be lower than that on HDCV using both read-outs. In summary, the results generated in the hamster model showed that RIG induced similar or less interference on PVRV-NG than the standard-of-care vaccines.


Subject(s)
Blood Group Antigens , Rabies Vaccines , Rabies virus , Rabies , Animals , Antibodies, Viral , Chlorocebus aethiops , Cricetinae , Horses , Humans , Immunoglobulins , Immunologic Factors , Post-Exposure Prophylaxis , Rabies/prevention & control , Rabies Vaccines/immunology , Rabies virus/immunology , Vero Cells
19.
J Med Chem ; 65(7): 5449-5461, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35349261

ABSTRACT

Peptidic agonists of the glucagon-like peptide-1 receptor (GLP-1R) have gained a prominent role in the therapy of type-2 diabetes and are being considered for reducing food intake in obesity. Potential advantages of small molecules acting as positive allosteric modulators (PAMs) of GLP-1R, including oral administration and reduced unwanted effects, could improve the utility of this class of drugs. Here, we describe the discovery of compound 9 (4-{[1-({3-[4-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-5-yl}methyl)piperidin-3-yl]methyl}morpholine, V-0219) that exhibits enhanced efficacy of GLP-1R stimulation, subnanomolar potency in the potentiation of insulin secretion, and no significant off-target activities. The identified GLP-1R PAM shows a remarkable in vivo activity, reducing food intake and improving glucose handling in normal and diabetic rodents. Enantioselective synthesis revealed oral efficacy for (S)-9 in animal models. Compound 9 behavior bolsters the interest of a small-molecule PAM of GLP-1R as a promising therapeutic approach for the increasingly prevalent obesity-associated diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Administration, Oral , Animals , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Obesity/drug therapy , Peptides/therapeutic use
20.
Genes (Basel) ; 13(2)2022 01 22.
Article in English | MEDLINE | ID: mdl-35205236

ABSTRACT

miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.


Subject(s)
Cysts , MicroRNAs , Polycystic Kidney Diseases , Polycystic Ovary Syndrome , Biomarkers/metabolism , Cysts/metabolism , Female , Follicular Fluid/metabolism , Humans , Male , MicroRNAs/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL