Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34580671

ABSTRACT

The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here we use BioID to map the SARS-CoV-2 virus-host interactome using human lung cancer derived A549 cells expressing individual SARS-CoV-2 viral proteins. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are in association with SARS-CoV-2 proteins. We have also established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Collectively, these studies provide a valuable resource to potentially uncover novel SARS-CoV-2 biology and inform development of antivirals.

2.
Transl Psychiatry ; 9(1): 308, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31740662

ABSTRACT

Transcriptomics and candidate gene/protein expression studies have indicated several biological processes modulated by methylphenidate (MPH), widely used in attention-deficit/hyperactivity disorder (ADHD) treatment. However, the lack of a differential proteomic profiling of MPH treatment limits the understanding of the most relevant mechanisms by which MPH exerts its pharmacological effects at the molecular level. Therefore, our aim is to investigate the MPH-induced proteomic alterations using an experimental design integrated with a pharmacogenomic analysis in a translational perspective. Proteomic analysis was performed using the cortices of Wistar-Kyoto rats, which were treated by gavage with MPH (2 mg/kg) or saline for two weeks (n = 6/group). After functional enrichment analysis of the differentially expressed proteins (DEP) in rats, the significant biological pathways were tested for association with MPH response in adults with ADHD (n = 189) using genome-wide data. Following MPH treatment in rats, 98 DEPs were found (P < 0.05 and FC < -1.0 or > 1.0). The functional enrichment analysis of the DEPs revealed 18 significant biological pathways (gene-sets) modulated by MPH, including some with recognized biological plausibility, such as those related to synaptic transmission. The pharmacogenomic analysis in the clinical sample evaluating these pathways revealed nominal associations for gene-sets related to neurotransmitter release and GABA transmission. Our results, which integrate proteomics and pharmacogenomics, revealed putative molecular effects of MPH on several biological processes, including oxidative stress, cellular respiration, and metabolism, and extended the results involving synaptic transmission pathways to a clinical sample. These findings shed light on the molecular signatures of MPH effects and possible biological sources of treatment response variability.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/genetics , Central Nervous System Stimulants/therapeutic use , Methylphenidate/therapeutic use , Adult , Animals , Female , Humans , Male , Pharmacogenetics , Proteomics , Random Allocation , Rats , Rats, Inbred WKY
3.
Theriogenology ; 100: 8-15, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28708537

ABSTRACT

To the best of our knowledge, this is the first study describing the proteome of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs) in a global and functional manner. The aim of this work was to analyze the proteome of previously characterized UCIM-MSCs to determine protein abundance and classify the identified proteins according to Gene Ontology (GO) terms. Protein classification analysis according to biological process, molecular function and cellular component was performed using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System, which revealed enrichment for 42 biological processes, 23 molecular functions and 18 cellular components. Protein abundance was estimated according to the emPAI method (Exponential Modified Protein Abundance Index). The two most abundant proteins in the proteome of UCIM-MSCs were the cytoskeletal proteins actin and vimentin, which have important roles in cell stability and motility. Additionally, we identified 14 cell surface antigens. Three of them, CD44, CD90 and CD105, had been previously validated by flow cytometry. In the present study, we also identified important information about the biological properties of UCIM-MSCs such as differentiation potential, low immunogenicity (low MHC-II expression) and chromosomal stability, which reinforces their use for cell therapy. Together with the proteomic findings, this information allowed us to infer the functional relevance of several activities related to primary metabolic processes, protein synthesis, production of vesicle coats, vesicle-mediated transport and antioxidant activity. In addition, the identification of different cell surface markers may help establish an immunophenotypic panel suitable for the characterization of MSCs from equine fetal membranes.


Subject(s)
Horses/physiology , Mesenchymal Stem Cells/metabolism , Proteome , Umbilical Cord/cytology , Animals , Gene Expression Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...