Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(5): e0233056, 2020.
Article in English | MEDLINE | ID: mdl-32396546

ABSTRACT

The content and composition of seed storage proteins is largely responsible for wheat end-use quality. They mainly consist of polymeric glutenins and monomeric gliadins. According to their electrophoretic mobility, gliadins and glutenins are subdivided into several fractions. Glutenins are classified as high molecular weight or low molecular weight glutenin subunits (HMW-GSs and LMW-GSs, respectively). LMW-GSs are encoded by multigene families located at the orthologous Glu-3 loci. We designed a set of 16 single-nucleotide polymorphism (SNP) markers that are able to detect SDS-PAGE alleles at the Glu-A3 and Glu-B3 loci. The SNP markers captured the diversity of alleles in 88 international reference lines and 27 Mexican cultivars, when compared to SDS-PAGE and STS markers, however, showed a slightly larger percent of multiple alleles, mainly for Glu-B3. SNP markers were then used to determine the Glu-1 and Glu-3 allele composition in 54 CIMMYT historical lines and demonstrated to be useful tool for breeding programs to improve wheat end product properties.


Subject(s)
Glutens/genetics , Triticum/genetics , Alleles , Base Sequence , Bread , DNA, Plant/genetics , Genes, Plant , Genetic Markers , Glutens/chemistry , Molecular Weight , Plant Breeding , Polymorphism, Single Nucleotide , Protein Subunits , Sequence Tagged Sites
2.
PLoS One ; 13(11): e0204757, 2018.
Article in English | MEDLINE | ID: mdl-30496187

ABSTRACT

One of the biggest challenges for genetic studies on natural or unstructured populations is the unbalanced datasets where individuals are measured at different times and environments. This problem is also common in crop and animal breeding where many individuals are only evaluated for a single year and large but unbalanced datasets can be generated over multiple years. Many wheat breeding programs have focused on increasing bread wheat (Triticum aestivum L.) yield, but processing and end-use quality are critical components when considering its use in feeding the rising population of the next century. The challenges with end-use quality trait improvements are high cost and seed amounts for testing, the latter making selection in early breeding populations impossible. Here we describe a novel approach to identify marker-trait associations within a breeding program using a meta-genome wide association study (GWAS), which combines GWAS analysis from multi-year unbalanced breeding nurseries, in a manner reflecting meta-GWAS in humans. This method facilitated mapping of processing and end-use quality phenotypes from advanced breeding lines (n = 4,095) of the CIMMYT bread wheat breeding program from 2009 to 2014. Using the meta-GWAS we identified marker-trait associations, allele effects, candidate genes, and can select using markers generated in this process. Finally, the scope of this approach can be broadly applied in 'breeding-assisted genomics' across many crops to greatly increase our functional understanding of plant genomes.


Subject(s)
Bread , Genome-Wide Association Study , Plant Breeding , Triticum/genetics , Triticum/growth & development
3.
Plant Genome ; 9(2)2016 07.
Article in English | MEDLINE | ID: mdl-27898810

ABSTRACT

Wheat ( L.) cultivars must possess suitable end-use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense. Without testing and selection, many undesirable materials are advanced, expending additional resources. Here, we develop and validate whole-genome prediction models for end-use quality phenotypes in the CIMMYT bread wheat breeding program. Model accuracy was tested using forward prediction on breeding lines ( = 5520) tested in unbalanced yield trials from 2009 to 2015 at Ciudad Obregon, Sonora, Mexico. Quality parameters included test weight, 1000-kernel weight, hardness, grain and flour protein, flour yield, sodium dodecyl sulfate sedimentation, Mixograph and Alveograph performance, and loaf volume. In general, prediction accuracy substantially increased over time as more data was available to train the model. Reflecting practical implementation of genomic selection (GS) in the breeding program, forward prediction accuracies () for quality parameters were assessed in 2015 and ranged from 0.32 (grain hardness) to 0.62 (mixing time). Increased selection intensity was possible with GS since more entries can be genotyped than phenotyped and expected genetic gain was 1.4 to 2.7 times higher across all traits than phenotypic selection. Given the limitations in measuring many lines for quality, we conclude that GS is a powerful tool to facilitate early generation selection for end-use quality in wheat, leaving larger populations for selection on yield during advanced testing and leading to better gain for both quality and yield in bread wheat breeding programs.


Subject(s)
Genome, Plant/genetics , Plant Breeding , Selection, Genetic , Triticum/genetics , Genotype , Mexico , Models, Genetic , Phenotype
4.
G3 (Bethesda) ; 6(7): 1819-34, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27172218

ABSTRACT

This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H) for the highly heritable traits, days to heading (DTH), and days to maturity (DTM). Analyses accounting and not accounting for population structure were performed. Genomic prediction models include genotype × environment interaction (G × E). Two alternative prediction strategies were studied: (1) random cross-validation of the data in 20% training (TRN) and 80% testing (TST) (TRN20-TST80) sets, and (2) two types of core sets, "diversity" and "prediction", including 10% and 20%, respectively, of the total collections. Accounting for population structure decreased prediction accuracy by 15-20% as compared to prediction accuracy obtained when not accounting for population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly lower for Iranian collections. Prediction accuracy when incorporating G × E for DTH and DTM for Mexican landraces for TRN20-TST80 was around 0.60, which is greater than without the G × E term. For Iranian landraces, accuracies were 0.55 for the G × E model with TRN20-TST80. Results show promising prediction accuracies for potential use in germplasm enhancement and rapid introgression of exotic germplasm into elite materials.


Subject(s)
Genome, Plant , Models, Statistical , Quantitative Trait, Heritable , Triticum/genetics , Adaptation, Physiological/genetics , Droughts , Gene-Environment Interaction , Genotype , Hot Temperature , Iran , Mexico , Models, Genetic , Phenotype , Selection, Genetic , Stress, Physiological , Triticum/classification
5.
J Cereal Sci ; 62: 143-150, 2015 Mar.
Article in English | MEDLINE | ID: mdl-27818572

ABSTRACT

Low molecular weight glutenin subunits (LMW-GS) encoded by the Glu-3 loci are known to contribute to wheat breadmaking quality. However, the specific effect of individual Glu-3 alleles is not well understood due to their complex protein banding patterns in SDS-PAGE and tight linkage with gliadins at the Gli-1 locus. Using DNA markers and a backcross program we developed a set of nine near isogenic lines (NILs) including different Glu-A3/GliA-1 or Glu-B3/Gli-B1 alleles in the genetic background of the Argentine variety ProINTA Imperial. The nine NILs and the control were evaluated in three different field trials in Argentina. Significant genotype-by-environment interactions were detected for most quality parameters indicating that the effects of the Glu-3/Gli-1 alleles are modulated by environmental differences. None of the NILs showed differences in total flour protein content, but relative changes in the abundance of particular classes of proteins cannot be ruled out. On average, the Glu-A3f, Glu-B3b, Glu-B3g and Glu-B3iMan alleles were associated with the highest values in gluten strength-related parameters, while Glu-A3e, Glu-B3a and Glu-B3iChu were consistently associated with weak gluten and low quality values. The value of different Glu3/Gli-1 allele combinations to improve breadmaking quality is discussed.

6.
BMC Plant Biol ; 10: 124, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20573275

ABSTRACT

BACKGROUND: Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF x SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. RESULTS: At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. CONCLUSIONS: PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the CIMMYT and INRA Clermont-Ferrand germplasm collections, should also promote information sharing in the identification of individual LMW-GS and thus provide useful information for quality improvement in common wheat.


Subject(s)
Glutens/chemistry , Triticum/chemistry , Alleles , DNA, Plant/genetics , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Glutens/genetics , Glutens/isolation & purification , Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...