Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(15): 7736-7748, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37439359

ABSTRACT

Nucleic acids not only form the basis of heredity, but are increasingly a source of novel nano-structures, -devices and drugs. This has spurred the development of chemically modified alternatives (xeno nucleic acids (XNAs)) comprising chemical configurations not found in nature to extend their chemical and functional scope. XNAs can be evolved into ligands (XNA aptamers) that bind their targets with high affinity and specificity. However, detailed investigations into structural and functional aspects of XNA aptamers have been limited. Here we describe a detailed structure-function analysis of LYS-S8-19, a 1',5'-anhydrohexitol nucleic acid (HNA) aptamer to hen egg-white lysozyme (HEL). Mapping of the aptamer interaction interface with its cognate HEL target antigen revealed interaction epitopes, affinities, kinetics and hot-spots of binding energy similar to protein ligands such as anti-HEL-nanobodies. Truncation analysis and molecular dynamics (MD) simulations suggest that the HNA aptamer core motif folds into a novel and not previously observed HNA tertiary structure, comprising non-canonical hT-hA-hT/hT-hT-hT triplet and hG4-quadruplex structures, consistent with its recognition by two different G4-specific antibodies.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Nucleic Acids , Ligands , Aptamers, Nucleotide/chemistry , Nucleic Acids/chemistry , Molecular Dynamics Simulation , SELEX Aptamer Technique
2.
J Am Chem Soc ; 142(49): 20600-20604, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33253551

ABSTRACT

Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.


Subject(s)
G-Quadruplexes , Base Sequence , Cell Cycle Checkpoints/drug effects , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Chromatin/metabolism , Ellipticines/pharmacology , G-Quadruplexes/drug effects , Genetic Loci , Humans , Ligands , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...