Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 10: 1223157, 2023.
Article in English | MEDLINE | ID: mdl-38077455

ABSTRACT

The remarkable growth of unmanned aerial vehicles (UAVs) has also sparked concerns about safety measures during their missions. To advance towards safer autonomous aerial robots, this work presents a vision-based solution to ensuring safe autonomous UAV landings with minimal infrastructure. During docking maneuvers, UAVs pose a hazard to people in the vicinity. In this paper, we propose the use of a single omnidirectional panoramic camera pointing upwards from a landing pad to detect and estimate the position of people around the landing area. The images are processed in real-time in an embedded computer, which communicates with the onboard computer of approaching UAVs to transition between landing, hovering or emergency landing states. While landing, the ground camera also aids in finding an optimal position, which can be required in case of low-battery or when hovering is no longer possible. We use a YOLOv7-based object detection model and a XGBooxt model for localizing nearby people, and the open-source ROS and PX4 frameworks for communication, interfacing, and control of the UAV. We present both simulation and real-world indoor experimental results to show the efficiency of our methods.

2.
Front Robot AI ; 10: 1190296, 2023.
Article in English | MEDLINE | ID: mdl-38196510

ABSTRACT

Ultra-wideband (UWB) localization methods have emerged as a cost-effective and accurate solution for GNSS-denied environments. There is a significant amount of previous research in terms of resilience of UWB ranging, with non-line-of-sight and multipath detection methods. However, little attention has been paid to resilience against disturbances in relative localization systems involving multiple nodes. This paper presents an approach to detecting range anomalies in UWB ranging measurements from the perspective of multi-robot cooperative localization. We introduce an approach to exploiting redundancy for relative localization in multi-robot systems, where the position of each node is calculated using different subsets of available data. This enables us to effectively identify nodes that present ranging anomalies and eliminate their effect within the cooperative localization scheme. We analyze anomalies created by timing errors in the ranging process, e.g., owing to malfunctioning hardware. However, our method is generic and can be extended to other types of ranging anomalies. Our approach results in a more resilient cooperative localization framework with a negligible impact in terms of the computational workload.

3.
Sensors (Basel) ; 20(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708807

ABSTRACT

With an increasing penetration of ubiquitous connectivity, the amount of data describing the actions of end-users has been increasing dramatically, both within the domain of the Internet of Things (IoT) and other smart devices. This has led to more awareness of users in terms of protecting personal data. Within the IoT, there is a growing number of peer-to-peer (P2P) transactions, increasing the exposure to security vulnerabilities, and the risk of cyberattacks. Blockchain technology has been explored as middleware in P2P transactions, but existing solutions have mainly focused on providing a safe environment for data trade without considering potential changes in interaction topologies. we present EdgeBoT, a proof-of-concept smart contracts based platform for the IoT built on top of the ethereum blockchain. With the Blockchain of Things (BoT) at the edge of the network, EdgeBoT enables a wider variety of interaction topologies between nodes in the network and external services while guaranteeing ownership of data and end users' privacy. in EdgeBoT, edge devices trade their data directly with third parties and without the need of intermediaries. This opens the door to new interaction modalities, in which data producers at the edge grant access to batches of their data to different third parties. Leveraging the immutability properties of blockchains, together with the distributed nature of smart contracts, data owners can audit and are aware of all transactions that have occurred with their data. we report initial results demonstrating the potential of EdgeBoT within the IoT. we show that integrating our solutions on top of existing IoT systems has a relatively small footprint in terms of computational resource usage, but a significant impact on the protection of data ownership and management of data trade.

SELECTION OF CITATIONS
SEARCH DETAIL
...