Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(20): 5902-5915, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-36255829

ABSTRACT

High flux solar simulators are artificial solar facilities developed to imitate the on-sun operations of concentrating solar power technologies but under a well-controlled lab-scale environment. We report the optical enhancement of different high flux solar simulators for solar thermal and thermochemical applications. The solar simulator enhancement is numerically conducted by optimizing the geometry of ellipsoidal reflectors at focal lengths of 1600, 1800, and 2000 mm. The Monte Carlo ray-tracing technique is employed to evaluate the optical performance of different reflector designs. The typical seven-lamp solar simulator arrangement in hexagonal configuration is modeled to analyze the optical performance at different focal lengths. In addition, different xenon arc lamps are modeled with rated powers of 3000, 4000, 4500, and 5000 W for assessing the radiative flux characteristics of the proposed solar simulators. After the optimization, theoretical results show that peak fluxes and radiative powers of 7.2-14.3MW/m2 and 5.06-10.4 kW, respectively, can be achieved with the proposed designs of solar simulators for the different rated powers. Compared with a commercial reflector, theoretical peak flux and power can be improved up to 36% and 17.9%, respectively, with the proper combination of lamp-reflector units. We provide design alternatives to select a more suitable light source at low-rated powers (≤5000W) and different focal lengths of the reflector, which simplifies the complexity of the design and improves the performance of solar simulators.

2.
Materials (Basel) ; 14(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34443277

ABSTRACT

Agro-industrial waste valorization is an attractive approach that offers new alternatives to deal with shrinkage and residue problems. One of these approaches is the synthesis of advanced carbon materials. Current research has shown that citrus waste, mainly orange peel, can be a precursor for the synthesis of high-quality carbon materials for chemical adsorption and energy storage applications. A recent approach to the utilization of advanced carbon materials based on lignocellulosic biomass is their use in solar absorber coatings for solar-thermal applications. This study focused on the production of biochar from Citrus aurantium orange peel by a pyrolysis process at different temperatures. Biochars were characterized by SEM, elemental analysis, TGA-DSC, FTIR, DRX, Raman, and XPS spectroscopies. Optical properties such as diffuse reflectance in the UV-VIS-NIR region was also determined. Physical-chemical characterization revealed that the pyrolysis temperature had a negative effect in yield of biochars, whereas biochars with a higher carbon content, aromaticity, thermal stability, and structural order were produced as the temperature increased. Diffuse reflectance measurements revealed that it is possible to reduce the reflectance of the material by controlling its pyrolysis temperature, producing a material with physicochemical and optical properties that could be attractive for use as a pigment in solar absorber coatings.

3.
Appl Opt ; 58(10): 2605-2615, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045060

ABSTRACT

This study presents the optical improvement of a high flux solar simulator (HFSS) with controllable flux-spot capabilities developed for researching solar thermal and thermochemical processes. The HFSS is comprised of seven 2.5 kWel Xenon arc lamps coupled with ellipsoidal reflectors, a servo-controlled attenuator curtain, and three-axes linear test bench. Different attenuators were designed and tested in order to identify the best curtain geometry to improve the HFSS modulation with the lowest possible radiative losses. The optical design improvement was performed with the aid of TracePro, a Monte Carlo ray-tracing software. From simulation results, radiative peak flux from 1700 to 480 kWm-2 from the focal plane to 300 mm further back was estimated without curtains. By using the attenuators, flux levels from 1570 to 92 kWm-2 at the focal plane were also estimated. An experimental validation was achieved with a single lamp-reflector unit obtaining peak flux distributions from 200±20 kWm-2 to 97±9.7 kWm-2 from the focal plane to 300 mm behind. Flux modulation from 170 to 1.5 kWm-2 was also measured at the focal plane using a servo-controlled curtain from fully-open slats (0°) to partially closed (60°). With this attenuator, introduced as the shutter of the system, the use of several lamps or electronic rectifiers is avoided and the radiative flux is modulated with high resolution in an optomechatronical form.

SELECTION OF CITATIONS
SEARCH DETAIL
...