Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 141: 107879, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34217098

ABSTRACT

This work presents the study of the voltage and oxygen effect on bacterial inactivation in water using a pulsed dielectric barrier discharge (DBD) under atmospheric pressure, where Escherichia coli (E. coli) and Salmonella typhi (S. typhi) bacteria were used as model microorganisms. A cylindrical DBD reactor was developed and tested in applications to assay the efficiency of bacterial inactivation in water on a volume of 500 mL flowing continuously throughout the system assisted with a peristaltic pump at 4.4 ± 0.1 mL/s. The efficiency of the treatment reached a 6-log10 reduction for both E. coli and S. typhi bacteria at 106 CFU/mL of concentration at the end of the first cycle of treatment at a minimum voltage of 12 kV with oxygen bubbling gas, concluding that there was a minimum voltage to produce inactivation of E. coli and S. typhi samples. Bacterial inactivation without the oxygen condition contrasted with the high rate of inactivation with oxygen at relatively low voltage discharges.


Subject(s)
Electricity , Escherichia coli , Microbial Viability , Oxygen/metabolism , Salmonella typhi
2.
J Environ Health Sci Eng ; 18(2): 755-768, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33312600

ABSTRACT

BACKGROUND: In developing countries, death due to diseases caused by fecal-oral ingestion can be avoided by taking action on drinking water issues. Adequate access to water treatment systems to reduce infections is a critical cause. Silver has been used as an antibacterial product, including biomedical applications. Therefore, in this paper, the effect of the chemical speciation of silver from silver-modified zeolite-rich tuffs on the mortality of Escherichia coli (E. coli), Streptococcus faecalis (S. faecalis) and Candida albicans (C. albicans) suspended in aqueous solution was investigated for disinfection purposes. METHODS: The following aspects were considered to develop the investigation: a) the technique to prepare the modified zeolitic materials, either with ionic silver or silver nanoparticles, which were obtained in two ways: one, with grapefruit extract and the second, by using non-thermal plasma generated in a dielectric barrier discharge reactor of parallel plates; b) the response of the prokaryotes (bacteria) and eukaryote (yeast) microorganisms to disinfectant agents in batch systems; c) the disinfection processes as a function of time to obtain kinetics parameters; and d) the kinetics of the silver release from the silver-modified zeolite-rich tuffs, considering the models of Higuchi and Korsmeyer. The zeolitic materials were characterized by low-vacuum scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). RESULTS: The non-thermal plasma reduced ionic silver is more efficient at generating silver compounds with several oxidation states, which are essential during the microbial inhibition process. For the bacterial (E. coli and S. faecalis), the materials with nanoparticles were efficient to inactivate them. However, the yeast (C. albicans) reaches the total inactivation when the zeolitic material contains ionic silver in the crystalline network. CONCLUSION: The E. coli, S. faecalis and C. albicans survival behavior suspended in aqueous solutions after contact with Ag-modified natural zeolites depends on the chemical speciation of the silver present in these materials, Ag+1 in the case of OAgiZ or nanoparticles of Ago promoted by the grapefruit extract (OAgnpTZ), as well as by non-thermal plasma generated in a dielectric barrier discharge reactor of parallel plates (OAgnpPZ). In general, the concentration of silver in the aqueous solution after the disinfection process cannot exceed the recommended levels established for international organizations. The OAgnpPZ is a potential microbicide agent against E. coli and C. albicans, and the OAgn pTZ for F. faecalis.Graphical abstractARTWORK.

3.
Radiat Res ; 179(6): 669-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23642044

ABSTRACT

The aim of the present study is to determine the deoxyribonucleic acid (DNA) damage by cells exposed to atmospheric pressure non-thermal plasma (APNTP). Mouse leukocytes embedded in agarose were exposed to the plasma at two different distances from a helium plasma needle outlet and during three different exposure periods. Damage was assessed by the single cell gel electrophoresis assay. The results indicate that, at 0.1 cm from the plasma needle, the exposure caused complete DNA fragmentation determined by the presence of so called "clouds". Samples exposed at 0.5 cm from the slide sample surface presented damage proportional to the exposure periods in terms of tail intensity, tail moment and "clouds" frequency. Studies performed with alkaline single cell gel electrophoresis assay to determine DNA breaks and alkali-labile sites, indicates that DNA damage produced by exposure to APNTP was caused mainly by oxidative radicals, rather than by UV light which causes cyclobutane pyrimidine dimers. These results allow us to conclude that plasma needle induced DNA breaks in mice leukocytes proportionally to exposure time.


Subject(s)
Comet Assay , DNA Breaks/radiation effects , Helium/adverse effects , Needles , Plasma Gases/adverse effects , Animals , Leukocytes/cytology , Leukocytes/metabolism , Leukocytes/radiation effects , Mice , Radio Waves/adverse effects
4.
J Water Health ; 10(3): 371-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22960481

ABSTRACT

An experimental study of ATCC (American Type Culture Collection) 8739 Escherichia coli bacteria inactivation in water by means of pulsed dielectric barrier discharge (PDBD) atmospheric pressure plasmas is presented. Plasma is generated by an adjustable power source capable of supplying high voltage 25 kV pulses, ∼30 µs long and at a 500 Hz frequency. The process was conducted in a ∼152 cm(3) cylindrical stainless steel coaxial reactor, endowed with a straight central electrode and a gas inlet. The bacterial concentration in water was varied from 10(3) up to 10(8) E. coli cells per millilitre. The inactivation was achieved without gas flow in the order of 82% at 10(8) colony-forming units per millilitre (CFU mL(-1)) concentrations in 600 s. In addition, oxygen was added to the gas supply in order to increase the ozone content in the process, raising the inactivation percentage to the order of 90% in the same treatment time. In order to reach a higher efficiency however, oxygen injection modulation is applied, leading to inactivation percentages above 99.99%. These results are similarly valid for lower bacterial concentrations.


Subject(s)
Electricity , Escherichia coli/physiology , Water Microbiology , Water Purification/instrumentation , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...