Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroscience ; 499: 118-129, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35914645

ABSTRACT

Intralaminar thalamic nuclei, including the central medial nucleus (CMT), have been classically implicated in the control of attentional functional states such as sleep-wake transitions. In rodents, the CMT innervates large cortical and subcortical areas bilaterally, including sensorimotor regions of the cortex and striatum, but its contribution to motor function, which regularly develops in faster temporal scales than attentional states, is still far from being completely understood. Here, by using a novel behavioral protocol to evaluate bilateral coordination in rats, combined with electrophysiological recordings and optogenetic manipulations, we studied the contribution of the CMT to motor control and coordination. We found that optogenetic stimulation of the central region of the CMT produced bilateral recruitment of neural activity in the sensorimotor cortex and striatum. The same type of stimulations produced a significant increase in bilateral movement coordination of the forelimbs accompanied by a decrease in movement trajectory variability. Optogenetic inactivation of the CMT did not affect motor execution but significantly increased execution times, suggesting less interest in the task. Altogether, our results indicate that brief CMT activations create windows of synchronized bilateral cortico-striatal activity, suitable to facilitate motor coordination in temporal scales relevant for motor execution.


Subject(s)
Intralaminar Thalamic Nuclei , Animals , Corpus Striatum , Intralaminar Thalamic Nuclei/physiology , Movement/physiology , Neostriatum , Neural Pathways/physiology , Optogenetics , Rats , Thalamic Nuclei/physiology
2.
Neuroscience ; 466: 10-25, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33965505

ABSTRACT

In parkinsonian conditions, network dynamics in the cortical and basal ganglia circuits present abnormal oscillations and periods of high synchrony, affecting the functionality of multiple striatal regions including the sensorimotor striatum. However, it is still unclear how these altered dynamics impact on sensory processing, a key feature for motor control that is severely impaired in parkinsonian patients. A major confound is that pathological dynamics in sensorimotor networks may elicit unspecific motor responses that may alter sensory representations through sensory feedback, making it difficult to disentangle motor and sensory components. To address this issue, we studied sensory processing using an anesthetized model with robust sensory representations throughout cortical and basal ganglia sensory regions and limited motor confounds in control and hemiparkinsonian rats. A general screening of sensory-evoked activity in large populations of neurons recorded in the primary sensory cortex (S1), dorsolateral striatum (DLS) and substantia nigra pars reticulata (SNr) revealed increased excitability and altered sensory representations in the three regions. Further analysis revealed uncoordinated population dynamics between DLS and S1/SNr. Finally, DLS lesions in hemiparkinsonian animals partially recovered population dynamics and execution in the rotarod.


Subject(s)
Basal Ganglia , Parkinsonian Disorders , Animals , Corpus Striatum , Humans , Neurons , Rats
SELECTION OF CITATIONS
SEARCH DETAIL