Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(21): 5654-5658, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38767520

ABSTRACT

Copper is a good CO2 electroreduction catalyst as products beyond CO form, but efficiency and selectivity is low. Experiments have shown that an admixture of other elements can help, and computational screening studies have pointed out various promising candidates based on the adsorption of a single CO molecule as a descriptor. Our calculations of CO adsorption on surfaces where a first row transition metal atom replaces a Cu atom show that multiple CO molecules, not just one, bind to the substitutional atom. For Fe, Co, and Ni atoms, a decrease in binding energy is found, but the reverse trend, namely, increasing bond strength, is found for V, Cr, and Mn and the first three CO molecules. Magnetic moment, charge, and position of the substitutional atom are also strongly affected by the CO adsorption in most cases. Magnetic moment is stepwise reduced to zero, and the outward displacement of the substitutional atom increased.

2.
J Phys Chem Lett ; 15(17): 4523-4530, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38634894

ABSTRACT

The structure of the solvation shell of the aqueous Fe3+ ion has been a subject of controversy due to discrepancies between experiments and different levels of theory. We address this issue by performing simulations for a wide range of ion concentrations, using various potential energy functions, supplemented by density functional theory calculations of selected configurations. The solvation shell undergoes abrupt transitions between two states: a hexacoordinated octahedral (OH) state and a capped trigonal prism (CTP) state with 7-fold coordination. The lifetime of these states is dependent on concentration. In dilute FeCl3 solutions, the lifetimes of both are similar (≈1 ns). However, the lifetime of the OH state increases with ion concentration, while that of the CTP state decreases slightly. When a uniform negative background charge is used instead of explicit counterions, the lifetime of the OH state is greatly overestimated. These findings underscore the need for further experimental measurements and higher-level simulations.

3.
Phys Chem Chem Phys ; 20(29): 19326-19331, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29993064

ABSTRACT

The reactive dynamics of N2 on W(100) has been investigated by means of quasi-classical trajectory calculations using an interpolated six-dimensional potential energy surface (PES) based on density functional theory energies obtained employing the vdW-DF2 functional. The dynamics are compared to those obtained using the PW91 functional and to experimental data. The results show that the new PES provides a significant improvement in the description of the reactivity in this system. We show that the long standing problem that constituted the large qualitative disagreement between the simulations performed with the PW91-PES and the experiments was due to the presence of energy barriers in the entrance channel that disappear when vdW forces are accounted for.

SELECTION OF CITATIONS
SEARCH DETAIL
...