Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Entomol Res ; 109(5): 604-611, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30616696

ABSTRACT

Insect-borne plant viruses usually alter the interactions between host plant and insect vector in ways conducive to their transmission ('host manipulation hypothesis'). Most studies have tested this hypothesis with persistently and non-persistently transmitted viruses, while few have examined semi-persistently transmitted viruses. The crinivirus Tomato chlorosis virus (ToCV) is semi-persistently transmitted virus by whiteflies, and has been recently reported infecting potato plants in Brazil, where Bemisia tabaci Middle East Asia Minor 1 (MEAM1) is a competent vector. We investigated how ToCV infection modifies the interaction between potato plants and B. tabaci in ways that increase the likelihood of ToCV transmission, in two clones, one susceptible ('Agata') and the other moderately resistant (Bach-4) to B. tabaci. Whiteflies alighted and laid more eggs on ToCV-infected plants than mock-inoculated plants of Bach-4. When non-viruliferous whiteflies were released on ToCV-infected plants near mock-inoculated plants, adults moved more intensely towards non-infected plants than in the reverse condition for both clones. Feeding on ToCV-infected plants reduced egg-incubation period in both clones, but the egg-adult cycle was similar for whiteflies fed on ToCV-infected and mock-inoculated plants. Our results demonstrated that ToCV infection in potato plants alters B. tabaci behaviour and development in distinct ways depending on the host clone, with potential implications for ToCV spread.


Subject(s)
Crinivirus/physiology , Hemiptera/virology , Plant Diseases/virology , Animals , Appetitive Behavior , Hemiptera/growth & development , Hemiptera/physiology , Insect Vectors/physiology , Insect Vectors/virology , Oviposition/physiology , Solanum tuberosum/parasitology , Solanum tuberosum/virology
2.
Bull Entomol Res ; 107(6): 828-838, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28434411

ABSTRACT

Treating plants with synthetic jasmonic acid (JA) induces a defensive response similar to herbivore attack, and is a potential strategy for integrated pest management. Despite the importance of sugarcane, its JA-induced defences have not yet been studied. We investigated the effects of JA treatment on the direct and indirect resistance of sugarcane to the key-pest and specialist herbivore Diatraea saccharalis and the generalist Spodoptera frugiperda. Indirect defences were examined by testing the attraction of Cotesia flavipes, a sugarcane-borer parasitoid, to JA-induced volatile. The results showed that JA-treated sugarcane did not affect the weight gain of the two larvae. However, in dual-choice assays, both species preferred to feed on mock rather than JA-treated plants. Leaf colorimetric analyses showed that visual cues are unlikely to be involved in larval preference, whereas results from olfactometric assays revealed that D. saccharalis preferred JA-induced over mock plant volatiles. After 48 h of treatment, JA-treated plants emitted a volatile blend attractive to C. flavipes, comprised mainly of sesquiterpenes. However, the parasitoid did not discriminate JA-treated from host-damaged plant volatiles. When the wasps were given a choice between JA-treated and JA-treated + host-damaged plants, they preferred the latter, which emitted a more complex blend, suggesting that JA treatment likely does not hamper host-finding. We concluded that JA induces the emission of volatiles that are attractive to the sugarcane borer parasitoid, as well as an antixenosis type of resistance in sugarcane against the two pests, although neither volatiles nor visual cues alone are involved in the underlying mechanism.


Subject(s)
Cyclopentanes/metabolism , Herbivory , Oxylipins/metabolism , Saccharum/physiology , Spodoptera/physiology , Wasps/physiology , Animals , Cues , Female , Host-Parasite Interactions , Smell , Spodoptera/parasitology
3.
Neotrop Entomol ; 42(4): 331-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23949852

ABSTRACT

Plants under herbivore attack synthetize defensive organic compounds that directly or indirectly affect herbivore performance and mediate other interactions with the community. The so-called herbivore-induced plant volatiles (HIPVs) consist of odors released by attacked plants that serve as important cues for parasitoids and predators to locate their host/prey. The understanding that has been gained on the ecological role and mechanisms of HIPV emission opens up paths for developing novel strategies integrated with biological control programs with the aim of enhancing the efficacy of natural enemies in suppressing pest populations in crops. Tactics using synthetic HIPVs or chemically/genetically manipulating plant defenses have been suggested in order to recruit natural enemies to plantations or help guiding them to their host more quickly, working as a "synergistic" agent of biological control. This review discusses strategies using HIPVs to enhance biological control that have been proposed in the literature and were categorized here as: (a) exogenous application of elicitors on plants, (b) use of plant varieties that emit attractive HIPVs to natural enemies, (c) release of synthetic HIPVs, and (d) genetic manipulation targeting genes that optimize HIPV emission. We discuss the feasibility, benefits, and downsides of each strategy by considering not only field studies but also comprehensive laboratory assays that present an applied approach for HIPVs or show the potential of employing them in the field.


Subject(s)
Crops, Agricultural , Herbivory , Odorants , Pest Control, Biological/methods , Plant Physiological Phenomena , Plants/parasitology , Animals , Plants/genetics , Volatilization
4.
Neotrop Entomol ; 41(1): 22-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-23950005

ABSTRACT

In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0-1 h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5-6 h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.


Subject(s)
Herbivory , Spodoptera/physiology , Zea mays , Animals , Female , Odorants , Volatilization
5.
J Chem Ecol ; 37(12): 1304-13, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22170346

ABSTRACT

Herbivore-induced plant volatiles are important host finding cues for larval parasitoids, and similarly, insect oviposition might elicit the release of plant volatiles functioning as host finding cues for egg parasitoids. We hypothesized that egg parasitoids also might utilize HIPVs of emerging larvae to locate plants with host eggs. We, therefore, assessed the olfactory response of two egg parasitoids, a generalist, Trichogramma pretiosum (Tricogrammatidae), and a specialist, Telenomus remus (Scelionidae) to HIPVs. We used a Y-tube olfactometer to tests the wasps' responses to volatiles released by young maize plants that were treated with regurgitant from caterpillars of the moth Spodoptera frugiperda (Noctuidae) or were directly attacked by the caterpillars. The results show that the generalist egg parasitoid Tr. pretiosum is innately attracted by volatiles from freshly-damaged plants 0-1 and 2-3 h after regurgitant treatment. During this interval, the volatile blend consisted of green leaf volatiles (GLVs) and a blend of aromatic compounds, mono- and homoterpenes, respectively. Behavioral assays with synthetic GLVs confirmed their attractiveness to Tr. pretiosum. The generalist learned the more complex volatile blends released 6-7 h after induction, which consisted mainly of sesquiterpenes. The specialist T. remus on the other hand was attracted only to volatiles emitted from fresh and old damage after associating these volatiles with oviposition. Taken together, these results strengthen the emerging pattern that egg and larval parasitoids behave in a similar way in that generalists can respond innately to HIPVs, while specialists seems to rely more on associative learning.


Subject(s)
Oviposition , Spodoptera/parasitology , Volatile Organic Compounds/analysis , Wasps/physiology , Zea mays/chemistry , Animals , Association Learning , Chemotaxis , Cues , Feeding Behavior , Gas Chromatography-Mass Spectrometry , Instinct , Larva/parasitology , Larva/physiology , Odorants , Plant Leaves/chemistry , Plant Leaves/metabolism , Smell , Species Specificity , Spodoptera/physiology , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...