Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Ecol ; 12(1): 47, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880879

ABSTRACT

BACKGROUND: Understanding how landscape characteristics affect animal movement is essential for conservation in human-dominated habitats. A fundamental question is how monoculture agroforests, including rubber and tea plantations, affect wildlife and its movement. Experimental translocations represent an important technique to assess animals' habitat selection while moving through agricultural matrices, especially when complemented with observations of birds' natural movements, and with "control" translocations, in which birds are moved within their natural habitat such as forest. Yet, experimental translocations have been little used for birds outside the Western Hemisphere. METHODS: We conducted experimental translocations and home-range measurements on an understory forest specialist, Brown-capped Babbler (BCBA, Pellorneum fuscocapillus), and a forest generalist, Tickell's Blue Flycatcher (TBFL, Cyornis tickelliae). These species were studied in three rubber plantations, which also included some open areas mostly planted with tea, and in three forest reserves of Sri Lanka. RESULTS: Four of the five BCBAs translocated within disturbed habitats (rubber plantations) could not return to their capture locations. However, all four individuals within undisturbed habitats (forest reserves) successfully returned to their point of origin within 10.5 daytime hours. In contrast, all TBFLs returned to their capture locations in both disturbed (n = 7) and undisturbed habitats (n = 3) within 11.3 daytime hours. A Cox-proportional survival model demonstrated that the percentage of rubber cover decreased return time, similar to the effect of open-area cover. The home range surveys (n = 13 for BCBA, n = 10 for TBFL) revealed that very little of the birds' natural home-ranges was covered by rubber (0.2% for BCBA, 13.1% for TBFL at 50% Kernel Density Estimates KDE). Home range size for BCBA was approximately half the size in disturbed habitats compared to undisturbed ones, although there was no significant difference between habitats for TBFL. CONCLUSIONS: We conclude that rubber plantations can be impermeable to understory habitat specialist birds, and even generalist species may avoid them long-term. Our findings highlight the potential utility of strips of native vegetation, particularly those featuring understory layers, as corridors to facilitate the movement of forest specialists in landscapes dominated by rubber plantations and other types of disturbed habitats.

2.
Behav Processes ; 185: 104345, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33545319

ABSTRACT

Although the contact calls of birds have been studied for their acoustic properties, limited research has investigated their repetitive nature. The rate of contact calls could be related to movement, with recruiting birds signalling their location, or it could help maintaining spacing between group mates, or give information about the environment where both signaller and receiver are located. If maintaining spacing, higher call rates would be expected in denser vegetation; alternatively, if birds gain information about predation risk from the cessation of contact calling, then open areas might elicit higher call rate. We studied how contact call rate in groups of Swinhoe's White-eyes (Zosterops simplex) was influenced by vegetation, collecting a total of 800 recordings. After statistically controlling for group size, the vegetation effect was weak and inconsistent. However, flying individuals produced a distinct flight call consisting of repeated notes similar to contact calls, and group-level contact call rate increased before flights, particularly when birds flew into the group. Therefore, we believe that contact call rate indicates information about individual or group movements, and could function as a continuous signal about the need for recruitment. We encourage further studies investigating how habitat, risk and audience influence contact call rate.


Subject(s)
Passeriformes , Vocalization, Animal , Acoustics , Animals , Ecosystem , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...