Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(9): 11449-11460, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33645207

ABSTRACT

The most direct approach to determining if two aqueous solutions will phase-separate upon mixing is to exhaustively screen them in a pair-wise fashion. This is a time-consuming process that involves preparation of numerous stock solutions, precise transfer of highly concentrated and often viscous solutions, exhaustive agitation to ensure thorough mixing, and time-sensitive monitoring to observe the presence of emulsion characteristics indicative of phase separation. Here, we examined the pair-wise mixing behavior of 68 water-soluble compounds by observing the formation of microscopic phase boundaries and droplets of 2278 unique 2-component solutions. A series of machine learning classifiers (artificial neural network, random forest, k-nearest neighbors, and support vector classifier) were then trained on physicochemical property data associated with the 68 compounds and used to predict their miscibility upon mixing. Miscibility predictions were then compared to the experimental observations. The random forest classifier was the most successful classifier of those tested, displaying an average receiver operator characteristic area under the curve of 0.74. The random forest classifier was validated by removing either one or two compounds from the input data, training the classifier on the remaining data and then predicting the miscibility of solutions involving the removed compound(s) using the classifier. The accuracy, specificity, and sensitivity of the random forest classifier were 0.74, 0.80, and 0.51, respectively, when one of the two compounds to be examined was not represented in the training data. When asked to predict the miscibility of two compounds, neither of which were represented in the training data, the accuracy, specificity, and sensitivity values for the random forest classifier were 0.70, 0.82 and 0.29, respectively. Thus, there is potential for this machine learning approach to improve the design of screening experiments to accelerate the discovery of aqueous two-phase systems for numerous scientific and industrial applications.

2.
ACS Nano ; 14(10): 12877-12884, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32966048

ABSTRACT

Rope-like structures are ubiquitous in Nature. They are supermolecular assemblies of macromolecules responsible for the structural and mechanical integrity of plant and animal tissues. Collagen fibrils with diameters between 50 and 500 nm and their helical supermolecular structure are good examples of such nanoscale biological ropes. Like man-made laid ropes, fibrils are typically loaded in tension, and due to their large aspect ratio, they are, in principle, prone to buckling and torsional instabilities. One way to study buckling of a rigid rod is to attach it to a stretched elastic substrate that is then returned to its original length. In the case of single collagen fibrils, the observed behavior depends on the degree of hydration. By going from buckling in ambient conditions to immersed in a buffer, fibrils go from the well-known sine wave response to a localized behavior reminiscent of the bird-caging of laid ropes. In addition, in ambient conditions, the sine wave response coexists with the formation of loops along the length of the fibrils, as observed for the torsional instability of a twisted filament when tension is decreased. This work provides direct evidence that single collagen fibrils are highly susceptible to axial compression because of their helical supermolecular structure. As a result, mammals that use collagen fibrils as their main load-bearing element in many tissues have evolved mitigating strategies that protect single fibrils from axial compression damage.


Subject(s)
Extracellular Matrix , Animals , Microscopy, Atomic Force
3.
Nanoscale ; 11(30): 14417-14425, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31334733

ABSTRACT

At the most fundamental level, collagen fibrils are rope-like structures assembled from triple-helical collagen molecules. One key structural characteristic of the fibril is the 67 nm D-band pattern arising from the quarter-stagger packing of the molecules. Our current understanding of the structural changes induced by tensile loading of collagen fibrils comes mostly from atomistic molecular dynamics simulations and tissue level experiments. Tensile testing of individual fibrils is an upcoming field of investigation, and thus far structural analysis has always taken place after the fibrils have been ruptured or strained and subsequently dried. There is therefore a gap in understanding how the structure of collagen fibrils transforms under tension, and how this reorganization affects the functionality of collagen fibrils within tissues. In this study, atomic force microscopy based nanomechanical mapping is introduced to image hydrated collagen fibrils absorbed to an elastic substrate. Upon stretching the substrate between 5 and 30%, we observe a radial stiffening consistent with the fibrils being under tension. This is associated with an increase in D-band length. In addition the indentation modulus contrast associated with the D-band pattern increases linearly with D-band strain. These results provide direct confirmation of, and new information on the axially inhomogeneous structural response of collagen fibrils to applied tension as previously proposed on the basis of X-ray scattering experiments on stretched tissues. Furthermore our approach opens the road for studying the structural impacts of tension on cell-matrix interactions at the molecular level.


Subject(s)
Collagen/chemistry , Nanotechnology/methods , Microscopy, Atomic Force , Molecular Dynamics Simulation , Protein Unfolding , Tensile Strength
4.
J Bioeth Inq ; 9(4): 419-32, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23188401

ABSTRACT

While human genetic research promises to deliver a range of health benefits to the population, genetic research that takes place in Indigenous communities has proven controversial. Indigenous peoples have raised concerns, including a lack of benefit to their communities, a diversion of attention and resources from non-genetic causes of health disparities and racism in health care, a reinforcement of "victim-blaming" approaches to health inequalities, and possible misuse of blood and tissue samples. Drawing on the international literature, this article reviews the ethical issues relevant to genetic research in Indigenous populations and considers how some of these have been negotiated in a genomic research project currently under way in a remote Aboriginal community. We consider how the different levels of Indigenous research governance operating in Australia impacted on the research project and discuss whether specific guidelines for the conduct of genetic research in Aboriginal and Torres Strait Islander communities are warranted.


Subject(s)
Biological Specimen Banks/ethics , Genetic Research/ethics , Native Hawaiian or Other Pacific Islander , Australia , Confidentiality , Dissent and Disputes , Genetics, Population/ethics , Human Genome Project , Humans , Informed Consent , Ownership , Risk
5.
J Pharmacol Toxicol Methods ; 55(3): 238-47, 2007.
Article in English | MEDLINE | ID: mdl-17141530

ABSTRACT

INTRODUCTION: A large number of drugs from a variety of pharmacological classes have been demonstrated to cause adverse effects on cardiac rhythm, including the life-threatening arrhythmia Torsades de Pointes. These side effects are often associated with prolongation of the QT interval and are mediated via blockade of the human ether-a-go-go related gene (hERG) encoded potassium channel. In order to manage this risk in the pharmaceutical industry it is desirable to evaluate QT prolongation as early as possible in the drug discovery process. METHODS: Here we describe the development of a 384-well fluorescence polarization (FP) binding assay compatible with high-throughput assessment of compound blockade of the hERG channel during the lead optimisation process. To characterise the fluorescent ligand that was developed, competition binding studies, kinetic studies and electrophysiology studies were performed. Furthermore, to validate the assay as a key screening method a series of competition binding studies were performed and correlated with functional data obtained via patch-clamp. RESULTS: Evaluation of the assay indicates that high quality data is obtained (Z'>0.6), that the K(i) values determined are equivalent to more traditional radiometric methods and that it is predictive for functional hERG blockade as assessed by patch clamp. DISCUSSION: Whilst FP assays, utilizing a variety of fluors, have become well established for the evaluation of G-protein-coupled receptor (GPCRs) and kinase ligand interactions, this technique has not been applied widely to the study of ion channels. Therefore, this represents a novel assay format that is amenable to the evaluation of thousands of compounds per day. Whilst other assay formats have proven predictive or high throughput, this assay represents one of few that combines both attributes, moreover it represents the most cost effective assay, making it truly amenable to early assessment of hERG blockade.


Subject(s)
Drug Evaluation, Preclinical , Drug-Related Side Effects and Adverse Reactions , Ether-A-Go-Go Potassium Channels/drug effects , Fluorescence Polarization/methods , Long QT Syndrome/chemically induced , Binding, Competitive , Caco-2 Cells , Drug Design , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Kidney/embryology , Kidney/metabolism , Ligands , Patch-Clamp Techniques , Predictive Value of Tests , Torsades de Pointes/chemically induced
6.
Int J Parasitol ; 35(5): 481-93, 2005 Apr 30.
Article in English | MEDLINE | ID: mdl-15826641

ABSTRACT

Centralisation of tools for analysis of genomic data is paramount in ensuring that research is always carried out on the latest currently available data. As such, World Wide Web sites providing a range of online analyses and displays of data can play a crucial role in guaranteeing consistency of in silico work. In this respect, the protozoan parasite research community is served by several resources, either focussing on data and tools for one species or taking a broader view and providing tools for analysis of data from many species, thereby facilitating comparative studies. In this paper, we give a broad overview of the online resources available. We then focus on the GeneDB project, detailing the features and tools currently available through it. Finally, we discuss data curation and its importance in keeping genomic data 'relevant' to the research community.


Subject(s)
Databases, Genetic , Genome, Protozoan , Genomics , Animals , Computational Biology , Information Storage and Retrieval , Online Systems
7.
Nucleic Acids Res ; 32(Database issue): D339-43, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14681429

ABSTRACT

GeneDB (http://www.genedb.org/) is a genome database for prokaryotic and eukaryotic organisms. The resource provides a portal through which data generated by the Pathogen Sequencing Unit at the Wellcome Trust Sanger Institute and other collaborating sequencing centres can be made publicly available. It combines data from finished and ongoing genome and expressed sequence tag (EST) projects with curated annotation, that can be searched, sorted and downloaded, using a single web based resource. The current release stores 11 datasets of which six are curated and maintained by biologists, who review and incorporate information from the scientific literature, public databases and the respective research communities.


Subject(s)
Databases, Genetic , Eukaryotic Cells , Genome , Prokaryotic Cells , Animals , Computational Biology , Expressed Sequence Tags , Genomics , Information Storage and Retrieval , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...