Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 11(498)2019 06 26.
Article in English | MEDLINE | ID: mdl-31243151

ABSTRACT

Castration-resistant prostate cancer (CRPC) recurs after androgen deprivation therapy (ADT) and is incurable. Reactivation of androgen receptor (AR) signaling in the low androgen environment of ADT drives CRPC. This AR activity occurs through a variety of mechanisms, including up-regulation of AR coactivators such as VAV3 and expression of constitutively active AR variants such as the clinically relevant AR-V7. AR-V7 lacks a ligand-binding domain and is linked to poor prognosis. We previously showed that VAV3 enhances AR-V7 activity to drive CRPC progression. Gene expression profiling after depletion of either VAV3 or AR-V7 in CRPC cells revealed arginine vasopressin receptor 1a (AVPR1A) as the most commonly down-regulated gene, indicating that this G protein-coupled receptor may be critical for CRPC. Analysis of publicly available human PC datasets showed that AVPR1A has a higher copy number and increased amounts of mRNA in advanced PC. Depletion of AVPR1A in CRPC cells resulted in decreased cell proliferation and reduced cyclin A. In contrast, androgen-dependent PC, AR-negative PC, or nontumorigenic prostate epithelial cells, which have undetectable AVPR1A mRNA, were minimally affected by AVPR1A depletion. Ectopic expression of AVPR1A in androgen-dependent PC cells conferred castration resistance in vitro and in vivo. Furthermore, treatment of CRPC cells with the AVPR1A ligand, arginine vasopressin (AVP), activated ERK and CREB, known promoters of PC progression. A clinically safe and selective AVPR1A antagonist, relcovaptan, prevented CRPC emergence and decreased CRPC orthotopic and bone metastatic growth in mouse models. Based on these preclinical findings, repurposing AVPR1A antagonists is a promising therapeutic approach for CRPC.


Subject(s)
Molecular Targeted Therapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Vasopressin/metabolism , Animals , Calcium/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Indoles/pharmacology , Indoles/therapeutic use , MAP Kinase Signaling System/drug effects , Male , Mice, Nude , Osteogenesis/drug effects , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-vav/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Androgen/metabolism , Receptors, Vasopressin/genetics
2.
Mol Syst Biol ; 14(8): e8202, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108134

ABSTRACT

Identifying critical pathways governing disease progression is essential for accurate prognosis and effective therapy. We developed a broadly applicable and novel systems-level gene discovery strategy. This approach focused on constitutively active androgen receptor (AR) splice variant-driven pathways as representative of an intractable mechanism of prostate cancer (PC) therapeutic resistance. We performed a meta-analysis of human prostate samples using weighted gene co-expression network analysis combined with experimental AR variant transcriptome analyses. An AR variant-driven gene module that is upregulated during human PC progression was identified. We filtered this module by identifying genes that functionally interacted with AR variants using a high-throughput synthetic genetic array screen in Schizosaccharomyces pombe This strategy identified seven AR variant-regulated genes that also enhance AR activity and drive cancer progression. Expression of the seven genes predicted poor disease-free survival in large independent PC patient cohorts. Pharmacologic inhibition of interacting members of the gene set potently and synergistically decreased PC cell proliferation. This unbiased and novel gene discovery strategy identified a clinically relevant, oncogenic, interacting gene hub with strong prognostic and therapeutic potential in PC.


Subject(s)
Carcinogenesis/genetics , Cell Proliferation/genetics , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Cell Line, Tumor , Disease-Free Survival , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Male , Prognosis , Prostatic Neoplasms/pathology , RNA Splicing/genetics , Receptors, Androgen/chemistry , Schizosaccharomyces/genetics , Signal Transduction/genetics
3.
Mol Cancer Res ; 15(11): 1469-1480, 2017 11.
Article in English | MEDLINE | ID: mdl-28811363

ABSTRACT

Castration-resistant prostate cancer (CRPC) progresses rapidly and is incurable. Constitutively active androgen receptor splice variants (AR-Vs) represent a well-established mechanism of therapeutic resistance and disease progression. These variants lack the AR ligand-binding domain and, as such, are not inhibited by androgen deprivation therapy (ADT), which is the standard systemic approach for advanced prostate cancer. Signaling by AR-Vs, including the clinically relevant AR-V7, is augmented by Vav3, an established AR coactivator in CRPC. Using mutational and biochemical studies, we demonstrated that the Vav3 Diffuse B-cell lymphoma homology (DH) domain interacted with the N-terminal region of AR-V7 (and full length AR). Expression of the Vav3 DH domain disrupted Vav3 interaction with and enhancement of AR-V7 activity. The Vav3 DH domain also disrupted AR-V7 interaction with other AR coactivators: Src1 and Vav2, which are overexpressed in PC. This Vav3 domain was used in proof-of-concept studies to evaluate the effects of disrupting the interaction between AR-V7 and its coactivators on CRPC cells. This disruption decreased CRPC cell proliferation and anchorage-independent growth, caused increased apoptosis, decreased migration, and resulted in the acquisition of morphological changes associated with a less aggressive phenotype. While disrupting the interaction between FL-AR and its coactivators decreased N-C terminal interaction, disrupting the interaction of AR-V7 with its coactivators decreased AR-V7 nuclear levels.Implications: This study demonstrates the potential therapeutic utility of inhibiting constitutively active AR-V signaling by disrupting coactivator binding. Such an approach is significant, as AR-Vs are emerging as important drivers of CRPC that are particularly recalcitrant to current therapies. Mol Cancer Res; 15(11); 1469-80. ©2017 AACR.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/metabolism , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Alternative Splicing , Binding Sites , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Male , Mutation , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/therapy , Protein Binding , Proto-Oncogene Proteins c-vav/chemistry , Receptors, Androgen/chemistry , Signal Transduction , Up-Regulation
4.
J Biol Chem ; 288(8): 5463-74, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23281476

ABSTRACT

Elevated androgen receptor (AR) activity in castration-resistant prostate cancer may occur through increased levels of AR co-activator proteins. Vav3, a guanine nucleotide exchange factor, is up-regulated following progression to castration resistance in preclinical models and is overexpressed in a significant number of human prostate cancers. Vav3 is a novel co-activator of the AR. We sought to identify Vav3 binding partners in an effort to understand the molecular mechanisms underlying Vav3 enhancement of AR activity and to identify new therapeutic targets. The cell division cycle 37 homolog (Cdc37), a protein kinase-specific co-chaperone for Hsp90, was identified as a Vav3 interacting protein by yeast two-hybrid screening. Vav3-Cdc37 interaction was confirmed by GST pulldown and, for native proteins, by co-immunoprecipitation experiments in prostate cancer cells. Cdc37 potentiated Vav3 co-activation of AR transcriptional activity and Vav3 enhancement of AR N-terminal-C-terminal interaction, which is essential for optimal receptor transcriptional activity. Cdc37 increased prostate cancer cell proliferation selectively in Vav3-expressing cells. Cdc37 did not affect Vav3 nucleotide exchange activity, Vav3 protein levels, or subcellular localization. Disruption of Vav3-Cdc37 interaction inhibited Vav3 enhancement of AR transcriptional activity and AR N-C interaction. Diminished Vav3-Cdc37 interaction also caused decreased prostate cancer cell proliferation selectively in Vav3-expressing cells. Taken together, we identified a novel Vav3 interacting protein that enhances Vav3 co-activation of AR and prostate cancer cell proliferation. Vav3-Cdc37 interaction may provide a new therapeutic target in prostate cancer.


Subject(s)
Cell Cycle Proteins/metabolism , Chaperonins/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-vav/physiology , Animals , COS Cells , Cell Line, Tumor , Cell Proliferation , Chlorocebus aethiops , Glutathione Transferase/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Male , Molecular Chaperones/metabolism , Protein Binding , Proto-Oncogene Proteins c-vav/metabolism , Two-Hybrid System Techniques
5.
Mol Endocrinol ; 26(12): 1967-79, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23023561

ABSTRACT

Advanced or metastatic prostate cancer is treated by androgen deprivation; however, patients inevitably relapse with castration-resistant prostate cancer (CRPC). CRPC remains dependent on androgen receptor (AR) signaling, which may include constitutive, ligand-independent action of naturally occurring AR splice variants. For example, the AR splice variant AR3 (also termed AR-V7) is expressed in CRPC and is linked to poor prognosis. Vav3, a Rho GTPase guanine nucleotide exchange factor, is an AR coactivator that is up-regulated in human prostate cancer compared with benign tissue and in preclinical models of CRPC. Vav3 confers castration-resistant growth to androgen-dependent human prostate cancer cells. Despite the importance of AR coactivators in promoting CRPC, the potential role of these regulatory proteins in modulating AR splice variant activity is unknown. We examined the contributions of Vav3 to AR activity in two CRPC cell lines that naturally express relatively high levels of Vav3 and AR3. Vav3 or AR3 knockdown greatly attenuated cell proliferation, soft agar growth, and ligand-independent AR activity. Vav3 potently enhanced the transcriptional activity of AR3 and another clinically relevant AR splice variant, ARv567es. Vav3 knockdown resulted in lowered nuclear AR3 levels, whereas total AR3 levels remained similar. Conversely, overexpression of Vav3 resulted in increased nuclear AR3. Coimmunoprecipitation revealed that AR3 and Vav3 interact. These novel data demonstrating physical and functional interactions between Vav3, a unique AR coactivator, and an AR splice variant provide insights into the mechanisms by which Vav3 exploits and enhances AR signaling in the progression to CRPC.


Subject(s)
Prostatic Neoplasms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-vav/genetics , RNA Splicing , Receptors, Androgen/genetics , Castration , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Male , Neoplasm Transplantation , Neoplasms, Hormone-Dependent/genetics , Prostate/pathology , Protein Isoforms/genetics , Proto-Oncogene Proteins c-vav/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Transcription, Genetic , Transplantation, Heterologous , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...