Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 108(2): 798-804, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470192

ABSTRACT

A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphid-resistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55-84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages<20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64-80%) and 2013 (69-90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars.


Subject(s)
Aphids/physiology , Triticum/physiology , Animals , Aphids/classification , Hordeum , United States
2.
J Econ Entomol ; 107(3): 1274-83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25026693

ABSTRACT

Eight biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov), have been discovered in the United States since 2003. Biotypes are identified by the distinct feeding damage responses they produce on wheat carrying different Russian wheat aphid resistance genes, namely, from Dn1 to Dn9. Each Russian wheat aphid biotype has been named using plant damage criteria and virulence categories that have varied between studies. The study was initiated to compare the plant damage caused by all the eight known Russian wheat aphid biotypes, and analyze the results to determine how Russian wheat aphid virulence should be classified. Each Russian wheat aphid biotype was evaluated on 16 resistant or susceptible cereal genotypes. Plant damage criteria included leaf roll, leaf chlorosis, and plant height. The distribution of chlorosis ratings followed a bimodal pattern indicating two categories of plant responses, resistant or susceptible. Correlations were significant between chlorosis ratings and leaf roll (r(2) = 0.72) and between chlorosis ratings and plant height (r(2) = 0.48). The response of 16 cereal genotypes to feeding by eight Russian wheat aphid biotypes found RWA1, RWA2, RWA6, and RWA8 to differ in virulence, while Russian wheat aphid biotypes RWA3, RWA4, RWA5, and RWA7 produced similar virulence profiles. These biotypes have accordingly been consolidated to what is hereafter referred to as RWA3/7. Our results indicated that the five main biotypes RWA1, RWA2, RWA3/7, RWA6, and RWA8 can be identified using only four wheat genotypes containing Dn3, Dn4, Dn6, and Dn9.


Subject(s)
Aphids/physiology , Ecotype , Hordeum/genetics , Insect Control/methods , Triticum/genetics , Animals , Aphids/genetics , Hordeum/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum/growth & development
3.
J Econ Entomol ; 107(5): 1969-76, 2014 10 01.
Article in English | MEDLINE | ID: mdl-26309288

ABSTRACT

The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), is an important pest in the western Great Plains of the United States, where it causes hundreds of millions of dollars of losses to barley and wheat production through reduced yields. Experiments to evaluate the effect of early planting and resistance in barley (Hordeum vulgare L.) on D. noxia were conducted at Fort Collins, CO; Tribune, KS; and Sidney, NE, in 2007, 2008, and 2009. Treatments included two planting dates and four cultivars, the D. noxia-resistant barley cultivars 'Stoneham' (Otis*4/STARS 9577B) and 'Sidney' (Otis*4/STARS 9301B), the susceptible cultivar 'Otis', and Otis treated with thiamethoxam. In tiller samples collected from May through early July, consistently lower D. noxia populations were found in plots planted ≍30 d earlier than normal at Fort Collins in all three years, and at Tribune in 2007. With one location-year exception, lower D. noxia populations occurred on plants of resistant varieties or the susceptible variety Otis treated with thiamethoxam than on untreated Otis plants. There were no significant differences in D. noxia populations produced on plants of either resistant variety and susceptible Otis plants treated with thiamethoxam. Interactions between resistant varieties and early planting resulted in reduced D. noxia populations at Fort Collins in 2007 and 2009, and at Tribune and Sidney in 2007. Planting D. noxia-resistant barley varieties, planting varieties earlier than normal, and the synergistic effect of resistant variety and early planting can significantly reduce D. noxia infestations on barley in the western High Plains.


Subject(s)
Aphids/physiology , Hordeum/growth & development , Hordeum/genetics , Insect Control/methods , Animals , Colorado , Herbivory , Kansas , Nebraska , Population Dynamics , Seasons
4.
J Econ Entomol ; 105(3): 1057-68, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22812148

ABSTRACT

In 1986, the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), became an invasive species of United States. Nearly 20 yr later, new biotypes appeared that were capable of overcoming most sources of resistance and became a renewed threat to wheat, Triticum aestivum L., production. Cyclical (CP) and obligate (OP) parthenogenesis enables aphids to both adapt to changing environments and exploit host resources. We documented these forms of reproduction for Russian wheat aphid in wheat and wild grasses in the Central Great Plains and Rocky Mountain regions during falls 2004-2009. Colonies from sample sites also were held under unheated greenhouse conditions and observed for the presence of sexual morphs and eggs through the winter. Russian wheat aphid populations were mainly OP and attempted to overwinter as adults, regardless of region sampled. A few populations contained oviparae but no males (gynocyclic) and were not specific to any particular region. Observation of the Russian wheat aphid colonies under greenhouse conditions failed to produce males or eggs. In spring 2007, CP was confirmed in a small population of Russian wheat aphid that eclosed from eggs (fundatricies) on wild grasses and wheat near Dove Creek, CO, in the Colorado Plateau region where other aphid species undergo CP. Lineages from ninety-three fundatricies were screened against 16 resistant and susceptible cereal entries to determine their biotypic classification. A high degree of biotypic diversity (41.4%) was detected in this population. Although CP was a rare in Russian wheat aphid populations, genetic recombination during the sexual cycle creates new biotypes and can have significant effects on population genetics.


Subject(s)
Aphids/physiology , Parthenogenesis , Animals , Female , Genetic Variation , Life Cycle Stages , Male , Triticum/parasitology , United States
5.
Genome ; 52(4): 353-60, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19370091

ABSTRACT

The PI 386148 triticale from Russia is among the highest resistant line to the Russian wheat aphid (RWA) (Diuraphis noxia (Mordvilko)). This triticale line was used as the male parent in crosses with Lamar wheat (Triticum aestivum L.). The F1 plants were backcrossed to Lamar wheat. The progenies were tested for RWA biotype 1 reaction for at least eight backcross and selfing generations. Five lines from these selections were identified for their resistance to the RWA and their seeds were increased for agronomic and other characterizations. Molecular and cytological analyses of these lines were performed using genomic in situ hybridization and rye chromosome-specific microsatellites markers. Three lines were cytologically stable and carried a pair of rye (Secale strictum (C. Presl) C. Presl) chromosomes as disomic addition lines of 1R. One line was unstable and showed a moderate level of mixoploidy with monosomic additions of 1R. Duplication of rye chromosome 1R was also identified. No wheat-rye chromosome interchange was detected, suggesting little homology between S. strictum and T. aestivum chromosomes. Specific microsatellite primers were used to identify the rye chromosomes present in each line. One rye chromosome, 1R, from the donor species contains genes for RWA resistance. Grain yield and test weight of three of the lines were similar to some adapted released wheat varieties under stress conditions.


Subject(s)
Aphids/physiology , Immunity, Innate , Microsatellite Repeats/genetics , Secale/immunology , Secale/parasitology , Triticum/immunology , Triticum/parasitology , Animals , Chromosome Banding , Chromosomes, Plant , Hybridization, Genetic , In Situ Hybridization, Fluorescence , Karyotyping , Secale/genetics , Triticum/genetics
6.
J Econ Entomol ; 99(6): 2151-5, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17195687

ABSTRACT

Since 2003, four new biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), RWA2-RWA5, have been discovered that have the ability to damage most of the wheat germplasm resistant to the original Russian wheat aphid population (RWA1). Barley germplasm lines with resistance to RWA1 have not yet been evaluated against the newest biotypes. Our study compared how biotypes RWA1-RWA5 affected the growth and leaf damage of RWA1-resistant germplasm (STARS 9301B, STARS 9577B), moderately resistant germplasm (MR-015), and susceptible varieties (Schuyler, Harrington, and Morex) under greenhouse conditions. Russian wheat aphid population levels also were determined 14 d after plant infestation. STARS 9301B exhibited strong resistance by showing only small differences in leaf damage and growth parameters from the feeding by the biotypes. STARS 9577B showed greater differences in damage by the Russian wheat aphid biotypes than STARS 9301B, yet, the ratings were still within the resistant category (e.g., chlorosis rating 2.3-4.9). Leaf chlorosis ratings for MR-015 ranged from 5.0 to 6.9 and fell within the moderately resistant to susceptible categories for all the biotypes. The greatest difference in leaf chlorosis occurred in Morex where RWA2 showed less virulence than the other biotypes. Feeding by the Russian wheat aphid biotypes produced only small differences in leaf rolling and plant growth within plant entries. Population levels of the Russian wheat aphid biotypes did not differ within barley entries (n = 610-971) at the termination of the study (14 d). From our research, we conclude that the new Russian wheat aphid biotypes pose no serious threat to the key sources of resistance in barley (STARS 9301B and 9577B).


Subject(s)
Aphids/physiology , Hordeum/parasitology , Triticum/physiology , Animals , Aphids/classification , Food Preferences , Genes, Plant , Host-Parasite Interactions , Triticum/parasitology
7.
J Econ Entomol ; 95(5): 1033-43, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12403431

ABSTRACT

We simulated the population dynamics and population genetics of two bivoltine species of corn borers, the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn borer, Diatraea grandiosella Dyar, in a hypothetical region of irrigated transgenic and nontransgenic corn where insecticide was applied only to the nontransgenic refuge crop. Over the 100-yr time horizon, resistance developed quickly in both species and to both transgenic corn and the insecticide when the allele for resistance to the respective toxin was dominant. When the allele for transgenic resistance was not dominant and the refuge location was constant over the time horizon, spraying the refuge to control southwestern corn borer had no effect on how quickly resistance to the transgenic corn developed. In contrast, the European corn borer developed resistance to transgenic corn much sooner when the refuge was sprayed once per year, and the time to 3% resistance allele frequency decreased as efficacy of the insecticide increased. Only when the refuge was treated less than once every 5 yr (10 generations) did the frequency of application decline enough to permit resistance management for the European corn borer to approximate the effectiveness of an unsprayed refuge. A consistently sprayed refuge <40% of the corn acreage was an inadequate resistance management strategy for the European corn borer even when a low efficacy insecticide (70% mortality) was used. When assumptions about European corn borer adult behavior were changed and the adults behaved similarly to adult southwestern corn borer, the development of resistance to the transgenic crop was slowed significantly.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Bacterial Toxins , Computer Simulation , Endotoxins , Insecticides , Models, Genetic , Moths/genetics , Pest Control, Biological/methods , Zea mays , Animals , Bacillus thuringiensis Toxins , Female , Hemolysin Proteins , Insecticide Resistance , Male , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...