Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 31(1): 34-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32749588

ABSTRACT

OBJECTIVES: Hippocampal sclerosis (HS) is a common cause of temporal lobe epilepsy. Neuroradiological practice relies on visual assessment, but quantification of HS imaging biomarkers-hippocampal volume loss and T2 elevation-could improve detection. We tested whether quantitative measures, contextualised with normative data, improve rater accuracy and confidence. METHODS: Quantitative reports (QReports) were generated for 43 individuals with epilepsy (mean age ± SD 40.0 ± 14.8 years, 22 men; 15 histologically unilateral HS; 5 bilateral; 23 MR-negative). Normative data was generated from 111 healthy individuals (age 40.0 ± 12.8 years, 52 men). Nine raters with different experience (neuroradiologists, trainees, and image analysts) assessed subjects' imaging with and without QReports. Raters assigned imaging normal, right, left, or bilateral HS. Confidence was rated on a 5-point scale. RESULTS: Correct designation (normal/abnormal) was high and showed further trend-level improvement with QReports, from 87.5 to 92.5% (p = 0.07, effect size d = 0.69). Largest magnitude improvement (84.5 to 93.8%) was for image analysts (d = 0.87). For bilateral HS, QReports significantly improved overall accuracy, from 74.4 to 91.1% (p = 0.042, d = 0.7). Agreement with the correct diagnosis (kappa) tended to increase from 0.74 ('fair') to 0.86 ('excellent') with the report (p = 0.06, d = 0.81). Confidence increased when correctly assessing scans with the QReport (p < 0.001, η2p = 0.945). CONCLUSIONS: QReports of HS imaging biomarkers can improve rater accuracy and confidence, particularly in challenging bilateral cases. Improvements were seen across all raters, with large effect sizes, greatest for image analysts. These findings may have positive implications for clinical radiology services and justify further validation in larger groups. KEY POINTS: • Quantification of imaging biomarkers for hippocampal sclerosis-volume loss and raised T2 signal-could improve clinical radiological detection in challenging cases. • Quantitative reports for individual patients, contextualised with normative reference data, improved diagnostic accuracy and confidence in a group of nine raters, in particular for bilateral HS cases. • We present a pre-use clinical validation of an automated imaging assessment tool to assist clinical radiology reporting of hippocampal sclerosis, which improves detection accuracy.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Adult , Epilepsy/pathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Sclerosis/diagnostic imaging , Sclerosis/pathology
2.
Neuroradiology ; 62(9): 1061-1078, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32435887

ABSTRACT

This review updates the radiologist on current epilepsy surgery practice in children, with a specific focus on the role of imaging in pre-surgical work-up, current and novel surgical techniques, expected post-surgical imaging appearances and important post-operative complications. A comprehensive review of the current and emerging international practices in paediatric epilepsy surgical planning and post-operative imaging is provided with details on case-based radiological findings. A detailed discussion of the pathophysiology and imaging features of different epileptogenic lesions will not be discussed as this is not the objective of this paper. Epilepsy surgery can be an effective method to control seizures in certain children with drug-resistant focal epilepsy. Early surgery in selected appropriate cases can lead to improved cognitive and developmental outcome. Advances in neurosurgical techniques, imaging and neuroanaesthesia have driven a parallel expansion in the array of epilepsy conditions which are potentially treatable with surgery. The range of surgical options is now wide, including minimally invasive ablative procedures for small lesions such as hypothalamic hamartomata, resections for focal lesions like hippocampal sclerosis and complex disconnective surgeries for multilobar conditions like Sturge Weber Syndrome and diffuse cortical malformations. An awareness of the surgical thinking when planning epilepsy surgery in children, and the practical knowledge of the operative steps involved will promote more accurate radiology reporting of the post-operative scan.


Subject(s)
Epilepsy/diagnostic imaging , Epilepsy/surgery , Neurosurgical Procedures/methods , Postoperative Complications/diagnostic imaging , Child , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Humans , Minimally Invasive Surgical Procedures , Patient Care Planning
4.
J Med Imaging Radiat Oncol ; 59(1): 54-65, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25565651

ABSTRACT

INTRODUCTION: Clinically occult fractures from non-accidental injury (NAI) are best detected on radiographic skeletal survey. However, there are regional variations regarding the views included in such surveys. We undertook a systematic review of the evidence supporting skeletal survey protocols to design a protocol that could be implemented across New Zealand. METHODS: In June 2013, we searched Medline, Google Scholar, the Cochrane database, UpToDate and relevant reference lists for English-language publications on skeletal survey in NAI from 1946. We included publications that contained a protocol or reported evidence supporting including, or excluding, specific views in a skeletal survey. All included publications were critically appraised. Based on this systematic review, a draft protocol was developed and presented to an Australian and New Zealand Society for Paediatric Radiology NAI symposium in October 2013. Feedback from the symposium and later discussions was incorporated into the final protocol. RESULTS: We identified 2 guidelines for skeletal survey, 13 other protocols and 15 articles providing evidence for inclusion of specific images in a skeletal survey. The guidelines scored poorly on critical appraisal of several aspects of their methods. We found no studies that validate any of the protocols or compare their performance. Evidence supporting inclusion in a skeletal survey is limited to ribs, spine, pelvis, hands and feet, and long bone views. Our final protocol is a standardised, two-tiered protocol consisting of between 17 and 22 views. CONCLUSION: A standardised protocol for radiographic skeletal survey protocol has been developed in New Zealand. We present it here for consideration by others.


Subject(s)
Child Abuse/diagnosis , Child Abuse/prevention & control , Fractures, Bone/diagnostic imaging , Fractures, Bone/epidemiology , Practice Guidelines as Topic , Radiography/standards , Accidents , Adolescent , Child , Child Welfare/statistics & numerical data , Child, Preschool , Female , Forensic Medicine/standards , Humans , Infant , Infant, Newborn , Male , New Zealand/epidemiology , Prevalence , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...