Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38588384

ABSTRACT

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Subject(s)
Biomass , Flowers , Light , Mustard Plant , Phytochemicals , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/radiation effects , Mustard Plant/metabolism , Mustard Plant/growth & development , Mustard Plant/chemistry , Mustard Plant/radiation effects , Flowers/growth & development , Flowers/metabolism , Flowers/chemistry , Flowers/radiation effects , Phytochemicals/metabolism , Phytochemicals/chemistry , Photosynthesis/radiation effects , Anthocyanins/metabolism , Anthocyanins/analysis , Red Light
2.
Annu Rev Food Sci Technol ; 14: 539-562, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36525689

ABSTRACT

Microgreens are edible young plants that have recently attracted interest because of their color and flavor diversity, phytonutrient abundance, short growth cycle, and minimal space and nutrient requirements. They can be cultivated in a variety of systems from simple home gardens to sophisticated vertical farms with automated irrigation, fertilizer delivery, and lighting controls. Microgreens have also attracted attention from space agencies hoping that their sensory qualities can contribute to the diet of astronauts in microgravity and their cultivation might help maintain crew physical and psychological health on long-duration spaceflight missions. However, many technical challenges and data gaps for growing microgreensboth on and off Earth remain unaddressed. This review summarizes recent studies on multiple aspects of microgreens, including nutritional and socioeconomic benefits, cultivation systems, operative conditions, innovative treatments, autonomous facilities, and potential space applications. It also provides the authors' perspectives on the challenges to stimulating more extensive interdisciplinary research.


Subject(s)
Agriculture , Space Flight , Farms , Diet
3.
Int J Biol Macromol ; 220: 135-146, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35963353

ABSTRACT

Hydrogels are attractive soilless media for plant cultivation with strong water and nutrient retention. However, pristine hydrogels contain mostly ultra-micro pores and lack air-filled porosity for root zone aeration. Herein we report a porous hydrogel composite comprising an agarose network and porous growing mix particle (GMP) fillers. The agarose backbone allowed the composite to sustain a 12-d growth cycle for red cabbage microgreens without the need for watering or crew interaction. Moreover, the GMP induced greater total pore volume and increased the prevalence of pores >30 µm by 8-fold. Further investigation suggested that the nutrients from GMP accounted for a 54 % increase in microgreen yield over pristine hydrogel, while the porous structure introduced by GMP improved the yield by another 44 %. Increased air-filled porosity accelerated the water transport and loss of hydrogel but maintained favorable water potential levels for plant extraction. Finally, the hydrogel composite supported microgreen growth satisfyingly under simulated microgravity despite some morphological changes. Results of this study reveal a novel growth substrate that is lightweight, convenient, and water-efficient, while effectively sustaining plant growth for multiple applications including indoor farming and space farming.


Subject(s)
Hydrogels , Water , Hydrogels/chemistry , Porosity , Sepharose , Water/chemistry , Water Supply
4.
Food Res Int ; 157: 111170, 2022 07.
Article in English | MEDLINE | ID: mdl-35761517

ABSTRACT

Outbreaks and product recalls involving romaine and iceberg lettuce are frequently reported in the United States. Novel technologies are needed to inactivate pathogens without compromising product quality and shelf life. In this study, the effects of a process aid composed of silver dihydrogen citrate, glycerin, and lactic acid (SGL) on Escherichia coli and Listeria monocytogenes concentrations on lettuce immediately after washing and during cold storage were evaluated. Sensory and quality attributes of fresh-cut iceberg lettuce were also evaluated. Laboratory results indicated that application of SGL solution for 30 s as a first step in the washing process resulted in a 3.15 log reduction in E. coli O157:H7 immediately after washing. For E. coli O157:H7 a significant difference between SGL treatment and all other treatments was maintained until day 7. On day zero, SGL led to a 2.94 log reduction of L. monocytogenes. However, there was no significant difference between treatments with or without SGL regardless of storage time. Pilot-plant results showed that samples receiving SGL spray followed by chlorinated flume wash exhibited a greater reduction (1.48 log) in nonpathogenic E. coli populations at the end of shelf life than other treatments (p < 0.05). Additional pilot plant tests were conducted to investigate the hypothesis that SGL residues could continue to impact microbial survival on the final washed lettuce. Results show that pathogens introduced subsequent to flume washing of lettuce pretreated with SGL solution were not affected by antimicrobial residues. The final quality and shelf life of flume washed lettuce were also unaffected by pretreatment with SGL. In conclusion, the results of this study demonstrate that this new technology has the potential to accelerate E. coli die-off on fresh-cut lettuce during cold storage and improve product safety, while not affecting quality throughout the shelf life of the finished products.


Subject(s)
Escherichia coli O157 , Lactuca , Colony Count, Microbial , Food Contamination/analysis , Food Contamination/prevention & control , Food Handling/methods , Silver
5.
Food Microbiol ; 95: 103677, 2021 May.
Article in English | MEDLINE | ID: mdl-33397611

ABSTRACT

Imported papayas from Mexico have been implicated in multiple salmonellosis outbreaks in the United States in recent years. While postharvest washing is a critical process to remove latex, dirt, and microbes, it also has the potential of causing cross-contamination by foodborne pathogens, with sponge or other fibrous rubbing tools often questioned as potential harboring or transmitting risk. In this study, Salmonella inactivation and cross-contamination via sponges and microfiber wash mitts during simulated papaya washing and cleaning were investigated. Seven washing treatments (wash without sanitizer; wash at free chlorine 25, 50, and 100 mg/L, and at peracetic acid 20, 40, and 80 mg/L), along with unwashed control, were evaluated, using Salmonella strains with unique antibiotic markers differentially inoculated on papaya rind (serovars Typhimurium, Heidelberg, and Derby) and on wash sponge or microfiber (serovars Typhimurium, Newport, and Braenderup). Salmonella survival and transfer on papaya and on sponge/microfiber, and in wash water were detected using selective plating or enrichment. The washing and cleaning process reduced Salmonella on inoculated papayas by 1.69-2.66 and 0.69-1.74 log for sponge and microfiber cleaning, respectively, with the reduction poorly correlated to sanitizer concentration. Salmonella on inoculated sponge or microfiber was under detection limit (1.00 log CFU/cm2) by plate count, but remained recoverable by selective enrichment. Transference of Salmonella from inoculated papaya to sponge/microfiber, and vice versa, could be detected sporadically by selective enrichment. Sponge/microfiber mediated Salmonella cross-contamination from inoculated to uninoculated papayas was frequently detectable by selective enrichment, but rendered undetectable by wetting sponge/microfiber in sanitizing wash water (FC 25-100 mg/L or PAA 20-80 mg/L) between washing different papaya fruits. Therefore, maintaining adequate sanitizer levels and frequently wetting sponge/microfiber in sanitizing wash water can effectively mitigate risks of Salmonella cross-contamination associated with postharvest washing, especially with regard to the use of sponge or microfiber wash mitts.


Subject(s)
Carica/microbiology , Chlorine/pharmacology , Disinfectants/pharmacology , Food Handling/instrumentation , Peracetic Acid/pharmacology , Porifera/microbiology , Salmonella typhimurium/drug effects , Animals , Food Contamination/analysis , Food Contamination/prevention & control , Food Handling/methods , Fruit/microbiology , Mexico , Salmonella typhimurium/growth & development
6.
PLoS One ; 15(12): e0243364, 2020.
Article in English | MEDLINE | ID: mdl-33296402

ABSTRACT

For the past decade, migratory beekeepers who provide honey bees for pollination services have experienced substantial colony losses on a recurring basis that have been attributed in part to exposure to insecticides, fungicides, or their combinations applied to crops. The phytochemicals p-coumaric acid and quercetin, which occur naturally in a wide variety of bee foods, including beebread and many types of honey, can enhance adult bee longevity and reduce the toxicity of certain pesticides. How variation in concentrations of natural dietary constituents affects interactions with xenobiotics, including synthetic pesticides, encountered in agroecosystems remains an open question. We tested the effects of these two phytochemicals at a range of natural concentrations on impacts of consuming propiconazole and chlorantraniliprole, a triazole fungicide and an insecticide frequently applied as a tank mix to almond trees during bloom in California's Central Valley. Propiconazole, even at low field concentrations, significantly reduced survival and longevity when consumed by adult bees in a sugar-based diet. The effects of propiconazole in combination with chlorantraniliprole enhanced mortality risk. The detrimental effects of the two pesticides were for the most part reduced when either or both of the phytochemicals were present in the diet. These findings suggest that honey bees may depend on non-nutritive but physiologically active phytochemical components of their natural foods for ameliorating xenobiotic stress, although only over a certain range of concentrations; particularly at the high end of the natural range, certain combinations can incur additive toxicity. Thus, efforts to develop nectar or pollen substitutes with phytochemicals to boost insecticide tolerance or immunity or to evaluate toxicity of pesticides to pollinators should take concentration-dependent effects of phytochemicals into consideration.


Subject(s)
Bees/metabolism , Fungicides, Industrial/pharmacology , Insecticides/pharmacology , Longevity/drug effects , Phytochemicals , Animals , Phytochemicals/metabolism , Phytochemicals/pharmacology
7.
J Insect Sci ; 19(4)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31268545

ABSTRACT

The 2018 student debates of the Entomological Society of America were held at the Joint Annual Meeting for the Entomological Societies of America, Canada, and British Columbia in Vancouver, BC. Three unbiased introductory speakers and six debate teams discussed and debated topics under the theme 'Entomology in the 21st Century: Tackling Insect Invasions, Promoting Advancements in Technology, and Using Effective Science Communication'. This year's debate topics included: 1) What is the most harmful invasive insect species in the world? 2) How can scientists diffuse the stigma or scare factor surrounding issues that become controversial such as genetically modified organisms, agricultural biotechnological developments, or pesticide chemicals? 3) What new/emerging technologies have the potential to revolutionize entomology (other than Clustered Regularly Interspaced Short Palindromic Repeats)? Introductory speakers and debate teams spent approximately 9 mo preparing their statements and arguments and had the opportunity to share this at the Joint Annual Meeting with an engaged audience.


Subject(s)
Entomology/trends , Insecta , Animals , Biotechnology , Introduced Species
SELECTION OF CITATIONS
SEARCH DETAIL
...