Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38857884

ABSTRACT

Host-associated microbial communities are shaped by host migratory movements. These movements can have contrasting impacts on microbiota, and understanding such patterns can provide insight into the ecological processes that contribute to community diversity. Furthermore, long-distance movements to new environments are anticipated to occur with increasing frequency due to host distribution shifts resulting from climate change. Understanding how hosts transport their microbiota with them could be of importance when examining biological invasions. Although microbial community shifts are well-documented, the underlying mechanisms that lead to the restructuring of these communities remain relatively unexplored. Using literature and ecological simulations, we develop a framework to elucidate the major factors that lead to community change. We group host movements into two types-regular (repeated/cyclical migratory movements, as found in many birds and mammals) and irregular (stochastic/infrequent movements that do not occur on a cyclical basis, as found in many insects and plants). Ecological simulations and prior research suggest that movement type and frequency, alongside environmental exposure (e.g. internal/external microbiota) are key considerations for understanding movement-associated community changes. From our framework, we derive a series of testable hypotheses, and suggest means to test them, to facilitate future research into host movement and microbial community dynamics.


Subject(s)
Microbiota , Animals , Animal Migration , Biodiversity , Birds/microbiology , Climate Change , Host Microbial Interactions , Mammals/microbiology
2.
Environ Microbiol ; 26(3): e16611, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38519875

ABSTRACT

Host-associated microbial communities are shaped by myriad factors ranging from host conditions, environmental conditions and other microbes. Disentangling the ecological impact of each of these factors can be particularly difficult as many variables are correlated. Here, we leveraged earthquake-induced changes in host population structure to assess the influence of population crashes on marine microbial ecosystems. A large (7.8 magnitude) earthquake in New Zealand in 2016 led to widespread coastal uplift of up to ~6 m, sufficient to locally extirpate some intertidal southern bull kelp populations. These uplifted populations are slowly recovering, but remain at much lower densities than at nearby, less-uplifted sites. By comparing the microbial communities of the hosts from disturbed and relatively undisturbed populations using 16S rRNA gene amplicon sequencing, we observed that disturbed host populations supported higher functional, taxonomic and phylogenetic microbial beta diversity than non-disturbed host populations. Our findings shed light on microbiome ecological assembly processes, particularly highlighting that large-scale disturbances that affect host populations can dramatically influence microbiome structure. We suggest that disturbance-induced changes in host density limit the dispersal opportunities of microbes, with host community connectivity declining with the density of host populations.


Subject(s)
Accidents, Traffic , Microbiota , Phylogeny , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , New Zealand
3.
Ann Bot ; 133(1): 169-182, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37804485

ABSTRACT

BACKGROUND AND AIMS: Contrasting patterns of host and microbiome biogeography can provide insight into the drivers of microbial community assembly. Distance-decay relationships are a classic biogeographical pattern shaped by interactions between selective and non-selective processes. Joint biogeography of microbiomes and their hosts is of increasing interest owing to the potential for microbiome-facilitated adaptation. METHODS: In this study, we examine the coupled biogeography of the model macroalga Durvillaea and its microbiome using a combination of genotyping by sequencing (host) and 16S rRNA amplicon sequencing (microbiome). Alongside these approaches, we use environmental data to characterize the relationship between the microbiome, the host, and the environment. KEY RESULTS: We show that although the host and microbiome exhibit shared biogeographical structure, these arise from different processes, with host biogeography showing classic signs of geographical distance decay, but with the microbiome showing environmental distance decay. Examination of microbial subcommunities, defined by abundance, revealed that the abundance of microbes is linked to environmental selection. As microbes become less common, the dominant ecological processes shift away from selective processes and towards neutral processes. Contrary to expectations, we found that ecological drift does not promote structuring of the microbiome. CONCLUSIONS: Our results suggest that although host macroalgae exhibit a relatively 'typical' biogeographical pattern of declining similarity with increasing geographical distance, the microbiome is more variable and is shaped primarily by environmental conditions. Our findings suggest that the Baas Becking hypothesis of 'everything is everywhere, the environment selects' might be a useful hypothesis to understand the biogeography of macroalgal microbiomes. As environmental conditions change in response to anthropogenic influences, the processes structuring the microbiome of macroalgae might shift, whereas those governing the host biogeography are less likely to change. As a result, increasingly decoupled host-microbe biogeography might be observed in response to such human influences.


Subject(s)
Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Geography
4.
Curr Biol ; 32(14): 3154-3160.e3, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35679870

ABSTRACT

Globally, species distributions are shifting in response to environmental change,1 and those that cannot disperse risk extinction.2 Many taxa, including marine species, are showing poleward range shifts as the climate warms.3 In the Southern Hemisphere, however, circumpolar oceanic fronts can present barriers to dispersal.4 Although passive, southward movement of species across this barrier has been considered unlikely,5,6 the recent discovery of buoyant kelp rafts on beaches in Antarctica7,8 demonstrates that such journeys are possible. Rafting is a key process by which diverse taxa-including terrestrial, e.g., Lindo,9 Godinot,10 and Censky et al.,11 and marine, e.g., Carlton et al.12 and Gillespie et al.13 species-can cross oceans.14 Kelp rafts can carry passengers7,15-17 and thus can act as vectors for long-distance dispersal of coastal organisms. The small numbers of kelp rafts previously found in Antarctica7,8 do not, however, shed much light on the frequency of such dispersal events.18 We use a combination of high-resolution phylogenomic analyses (>220,000 SNPs) and oceanographic modeling to show that long-distance biological dispersal events in Southern Ocean are not rare. We document tens of kelp (Durvillaea antarctica) rafting events of thousands of kilometers each, over several decades (1950-2019), with many kelp rafts apparently still reproductively viable. Modeling of dispersal trajectories from genomically inferred source locations shows that distant landmasses are well connected, for example South Georgia and New Zealand, and the Kerguelen Islands and Tasmania. Our findings illustrate the power of genomic approaches to track, and modeling to show frequencies of, long-distance dispersal events.


Subject(s)
Kelp , Phaeophyceae , Genomics , Kelp/physiology , Oceanography , Phylogeny
5.
Mol Ecol Resour ; 22(7): 2599-2613, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35593534

ABSTRACT

Reduced representation sequencing (RRS) is a widely used method to assay the diversity of genetic loci across the genome of an organism. The dominant class of RRS approaches assay loci associated with restriction sites within the genome (restriction site associated DNA sequencing, or RADseq). RADseq is frequently applied to non-model organisms since it enables population genetic studies without relying on well-characterized reference genomes. However, RADseq requires the use of many bioinformatic filters to ensure the quality of genotyping calls. These filters can have direct impacts on population genetic inference, and therefore require careful consideration. One widely used filtering approach is the removal of loci that do not conform to expectations of Hardy-Weinberg equilibrium (HWE). Despite being widely used, we show that this filtering approach is rarely described in sufficient detail to enable replication. Furthermore, through analyses of in silico and empirical data sets we show that some of the most widely used HWE filtering approaches dramatically impact inference of population structure. In particular, the removal of loci exhibiting departures from HWE after pooling across samples significantly reduces the degree of inferred population structure within a data set (despite this approach being widely used). Based on these results, we provide recommendations for best practice regarding the implementation of HWE filtering for RADseq data sets.


Subject(s)
Computational Biology , Genetics, Population , Computational Biology/methods , Genome , Sequence Analysis, DNA/methods
6.
R Soc Open Sci ; 9(1): 211550, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35242350

ABSTRACT

Most animal mitochondrial genomes are small, circular and structurally conserved. However, recent work indicates that diverse taxa possess unusual mitochondrial genomes. In Isopoda, species in multiple lineages have atypical and rearranged mitochondrial genomes. However, more species of this speciose taxon need to be evaluated to understand the evolutionary origins of atypical mitochondrial genomes in this group. In this study, we report the presence of an atypical mitochondrial structure in the New Zealand endemic marine isopod, Isocladus armatus. Data from long- and short-read DNA sequencing suggest that I. armatus has two mitochondrial chromosomes. The first chromosome consists of two mitochondrial genomes that have been inverted and fused together in a circular form, and the second chromosome consists of a single mitochondrial genome in a linearized form. This atypical mitochondrial structure has been detected in other isopod lineages, and our data from an additional divergent isopod lineage (Sphaeromatidae) lends support to the hypothesis that atypical structure evolved early in the evolution of Isopoda. Additionally, we find that an asymmetrical site previously observed across many species within Isopoda is absent in I. armatus, but confirm the presence of two asymmetrical sites recently reported in two other isopod species.

7.
Sci Data ; 7(1): 209, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620910

ABSTRACT

The use of DNA metabarcoding to characterise the biodiversity of environmental and community samples has exploded in recent years. However, taxonomic inferences from these studies are contingent on the quality and completeness of the sequence reference database used to characterise sample species-composition. In response, studies often develop custom reference databases to improve species assignment. The disadvantage of this approach is that it limits the potential for database re-use, and the transferability of inferences across studies. Here, we present the MARine Eukaryote Species (MARES) reference database for use in marine metabarcoding studies, created using a transparent and reproducible pipeline. MARES includes all COI sequences available in GenBank and BOLD for marine taxa, unified into a single taxonomy. Our pipeline facilitates the curation of sequences, synonymization of taxonomic identifiers used by different repositories, and formatting these data for use in taxonomic assignment tools. Overall, MARES provides a benchmark COI reference database for marine eukaryotes, and a standardised pipeline for (re)producing reference databases enabling integration and fair comparison of marine DNA metabarcoding results.


Subject(s)
Aquatic Organisms/classification , DNA Barcoding, Taxonomic , Databases, Factual , Eukaryota/classification , Animals
8.
BMC Bioinformatics ; 21(1): 220, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32471343

ABSTRACT

BACKGROUND: The first step in understanding ecological community diversity and dynamics is quantifying community membership. An increasingly common method for doing so is through metagenomics. Because of the rapidly increasing popularity of this approach, a large number of computational tools and pipelines are available for analysing metagenomic data. However, the majority of these tools have been designed and benchmarked using highly accurate short read data (i.e. Illumina), with few studies benchmarking classification accuracy for long error-prone reads (PacBio or Oxford Nanopore). In addition, few tools have been benchmarked for non-microbial communities. RESULTS: Here we compare simulated long reads from Oxford Nanopore and Pacific Biosciences (PacBio) with high accuracy Illumina read sets to systematically investigate the effects of sequence length and taxon type on classification accuracy for metagenomic data from both microbial and non-microbial communities. We show that very generally, classification accuracy is far lower for non-microbial communities, even at low taxonomic resolution (e.g. family rather than genus). We then show that for two popular taxonomic classifiers, long reads can significantly increase classification accuracy, and this is most pronounced for non-microbial communities. CONCLUSIONS: This work provides insight on the expected accuracy for metagenomic analyses for different taxonomic groups, and establishes the point at which read length becomes more important than error rate for assigning the correct taxon.


Subject(s)
Metagenomics/methods , Computer Simulation , Eukaryota/genetics , High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Sequence Analysis, DNA
9.
Ecol Evol ; 10(24): 13624-13639, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391668

ABSTRACT

Population genetic structure in the marine environment can be influenced by life-history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct-developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well-known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow between locations is extremely high, suggestive of an island model of migration. However, over larger spatial scales (600 km), populations exhibit a clear pattern of isolation-by-distance. Our results indicate that I. armatus exhibits significant migration across the hypothesized barriers and suggest that large-scale ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we find evidence of a north-south population genetic break occurring between Mahia and Wellington. While no known geophysical barrier is apparent in this area, it coincides with the location of a proposed border between bioregions. Analysis of loci under selection revealed that both isolation-by-distance and adaption may be contributing to the degree of population structure we have observed here. We conclude that developmental life history largely predicts dispersal in the intertidal isopod I. armatus. However, localized biogeographic processes can disrupt this expectation, and this may explain the potential meta-population detected in the Auckland region.

10.
Appl Spectrosc ; 62(7): 727-32, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18935820

ABSTRACT

The rapid detection and quantification of saxitoxin (STX) is reported using surface-enhanced Raman spectroscopy (SERS) with a colloidal hydrosol of silver nanoparticles. Under the conditions of our experiments, the limit of detection (LD) for STX using SERS is 3 nM, with a limit of quantification (LQ) of 20 nM. It is shown that the SERS method is rapid, with spectra being collected in as little as 5 seconds total integration time for a 40 nM STX sample. In order to improve the signal-to-noise ratio, SERS spectra were generally collected with a total integration time of 1 minute (6 accumulations of 10 seconds each), with no need for extensive sample work-up or substrate preparation. Based on these results, the SERS technique shows great promise for the future detection and quantification of STX molecules in aqueous solutions.


Subject(s)
Saxitoxin/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Reproducibility of Results , Sensitivity and Specificity
11.
Appl Opt ; 47(25): 4627-32, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18758534

ABSTRACT

Raman measurements of two common gases are made using a simple multipass capillary Raman cell (MCC) coupled to an unfiltered 18 around 1 fiber-optic Raman probe. The MCC, which is fabricated by chemical deposition of silver on the inner walls of a 2 mm inner diameter glass capillary tube, gives up to 20-fold signal enhancements for nonabsorbing gases. The device is relatively small and suitable for remote and in situ Raman measurements with optical fibers. The optical behavior of the MCC is similar to previously described liquid-core waveguides and hollow metal-coated waveguides used for laser transmission, but unlike the former devices, the MCC is generally applicable to a very wide range of nonabsorbing gases.

12.
Appl Spectrosc ; 62(3): 285-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18339235

ABSTRACT

A simple Raman multipass capillary cell (MCC) is described that gives 12- to 30-fold signal enhancements for non-absorbing gases. The cell is made by coating the inside of 2-mm inner diameter silica capillary tubes with silver. The device is very small and suitable for remote and in situ Raman measurements with optical fibers. Application of the MCC is similar to previously described liquid core waveguides but, unlike the latter devices, the MCC is generally more applicable to a wide range of non-absorbing gases.

13.
Appl Spectrosc ; 61(12): 1295-300, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18198020

ABSTRACT

Autoinducer (AI) molecules are used by quorum sensing (QS) bacteria to communicate information about their environment and are critical to their ability to coordinate certain physiological activities. Studying how these organisms react to environmental stresses could provide insight into methods to control these activities. To this end, we are investigating spectroscopic methods of analysis that allow in situ measurements of these AI molecules under different environmental conditions. We found that for one class of AIs, N-acyl-homoserine lactones (AHLs), surface-enhanced Raman spectroscopy (SERS) is a method capable of performing such measurements in situ. SERS spectra of seven different AHLs with acyl chain lengths from 4 to 12 carbons were collected for the first time using Ag colloidal nanoparticles synthesized via both citrate and borohydride reduction methods. Strong SERS spectra were obtained in as little as 10 seconds for 80 microM solutions of AI that exhibited the strongest SERS response, whereas 20 seconds was typical for most AI SERS spectra collected during this study. Although all spectra were similar, significant differences were detected in the SERS spectra of C4-AHL and 3-oxo-C6-AHL and more subtle differences were noted between all AHLs. Initial results indicate a detection limit of approximately 10(-6)M for C6-AHL, which is within the limits of biologically relevant concentrations of AI molecules (nM-microM). Based on these results, the SERS method shows promise for monitoring AI molecule concentrations in situ, within biofilms containing QS bacteria. This new capability offers the possibility to "listen in" on chemical communications between bacteria in their natural environment as that environment is stressed.


Subject(s)
Acyl-Butyrolactones/chemistry , Bacteria/metabolism , Quorum Sensing , Spectrum Analysis, Raman/methods , Colloids/chemistry , Molecular Structure , Silver/chemistry
14.
Appl Spectrosc ; 60(4): 356-65, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16613630

ABSTRACT

Initial results demonstrating the ability to classify surface-enhanced Raman (SERS) spectra of chemical and biological warfare agent simulants are presented. The spectra of two endospores (B. subtilis and B. atrophaeus), two chemical agent simulants (dimethyl methylphosphonate (DMMP) and diethyl methylphosphonate (DEMP)), and two toxin simulants (ovalbumin and horseradish peroxidase) were studied on multiple substrates fabricated from colloidal gold adsorbed onto a silanized quartz surface. The use of principal component analysis (PCA) and hierarchical clustering were used to evaluate the efficacy of identifying potential threat agents from their spectra collected on a single substrate. The use of partial least squares-discriminate analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA) on a compilation of data from separate substrates, fabricated under identical conditions, demonstrates both the feasibility and the limitations of this technique for the identification of known but previously unclassified spectra.


Subject(s)
Biological Warfare/classification , Biological Warfare/methods , Data Interpretation, Statistical , Gold Colloid/chemistry , Particle Size , Quartz/chemistry , Silanes/chemistry , Spectrum Analysis, Raman
15.
Appl Opt ; 43(35): 6492-9, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15617288

ABSTRACT

Despite the large neutral atomic and ionic emission enhancements that have been noted in collinear and orthogonal dual-pulse laser-induced breakdown spectroscopy, the source or sources of these significant signal and signal-to-noise ratio improvements have yet to be explained. In the research reported herein, the combination of a femtosecond preablative air spark and a nanosecond ablative pulse yields eightfold and tenfold material removal improvement for brass and aluminum, respectively, but neutral atomic emission is enhanced by only a factor of 3-4. Additionally, temporal correlation between enhancement of material removal and of atomic emission is quite poor, suggesting that the atomic-emission enhancements noted in the femtosecond-nanosecond pulse configuration result in large part from some source other than simple improvement in material removal.

16.
Appl Opt ; 43(27): 5243-50, 2004 Sep 20.
Article in English | MEDLINE | ID: mdl-15473246

ABSTRACT

A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

17.
Appl Opt ; 43(13): 2786-91, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15130020

ABSTRACT

As much as tenfold atomic emission enhancements have been observed in experiments combining nanosecond (ns) and femtosecond (fs) laser pulses in an orthogonal dual-pulse configuration for laser-induced breakdown spectroscopy (ns-fs orthogonal dual-pulse LIBS). In the examination of one of several potential sources of these atomic emission enhancements (sample heating by a ns air spark), minor reductions in atomic emission and as much as 15-fold improvements in mass removal have been observed for fs single-pulse LIBS of heated brass and aluminum samples. These results suggest that, although material removal with a high-powered, ultrashort fs pulse is temperature dependent, sample heating by the ns air spark is not the source of the atomic emission enhancements observed in ns-fs orthogonal dual-pulse LIBS.

18.
Appl Opt ; 42(30): 6085-93, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14594070

ABSTRACT

Use of dual-pulse laser-induced breakdown spectroscopy with an orthogonal spark orientation is presented as a technique for trace metal analysis in bulk aqueous solutions. Two separate Q-switched Nd:YAG lasers operating at their fundamental wavelengths are used to form a subsurface, laser-induced plasma in a bulk aqueous solution that is spectroscopically analyzed for the in situ detection of Ca, Cr, and Zn. Optimizing the key experimental parameters of proper spark alignment, gate delay (td), gate width (tb), and interpulse timing (deltaT) allowed experimentally determined detection limits of the order of micrograms per milliliter and submicrograms per milliliter. We present supporting evidence of a sampling mechanism that involves the formation of a cavitation bubble with the first pulse (E1) followed by analysis of that bubble with a second pulse (E2). The plasma created by E2 contains the analytically relevant information from the aqueous sample and often represents >250-fold enhancement over a single laser pulse with energy equal to E1 alone.

19.
Appl Opt ; 42(30): 6099-106, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14594072

ABSTRACT

Nanosecond and femtosecond laser pulses were combined in an orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS) configuration. Even without full optimization of interpulse alignment, ablation focus, large signal, signal-to-noise ratio, and signal-to-background ratio enhancements were observed for both copper and aluminum targets. Despite the preliminary nature of this study, these results have significant implications in the attempt to explain the sources of dual-pulse LIBS enhancements.

SELECTION OF CITATIONS
SEARCH DETAIL
...