Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Sci Rep ; 11(1): 21873, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750424

ABSTRACT

The complement system is a potent mediator of ischemia-reperfusion injury (IRI), which detrimentally affects the function and survival of transplanted kidneys. Human complement receptor 1 (HuCR1) is an integral membrane protein that inhibits complement activation by blocking the convertases that activate C3 and C5. We have previously reported that CSL040, a truncated form of recombinant soluble HuCR1 (sHuCR1), has enhanced complement inhibitory activity and improved pharmacokinetic properties compared to the parent molecule. Here, we compared the capacity of CSL040 and full-length sHuCR1 to suppress complement-mediated organ damage in a mouse model of warm renal IRI. Mice were treated with two doses of CSL040 or sHuCR1, given 1 h prior to 22 min unilateral renal ischemia and again 3 h later. 24 h after reperfusion, mice treated with CSL040 were protected against warm renal IRI in a dose-dependent manner, with the highest dose of 60 mg/kg significantly reducing renal dysfunction, tubular injury, complement activation, endothelial damage, and leukocyte infiltration. In contrast, treatment with sHuCR1 at a molar equivalent dose to 60 mg/kg CSL040 did not confer significant protection. Our results identify CSL040 as a promising therapeutic candidate to attenuate renal IRI and demonstrate its superior efficacy over full-length sHuCR1 in vivo.


Subject(s)
Kidney/injuries , Receptors, Complement 3b/administration & dosage , Reperfusion Injury/prevention & control , Animals , Complement Activation/drug effects , Disease Models, Animal , Humans , Kidney/drug effects , Kidney/immunology , Kidney Transplantation/adverse effects , Male , Mice , Mice, Inbred C57BL , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Receptors, Complement 3b/chemistry , Reperfusion Injury/etiology , Reperfusion Injury/immunology , Solubility
2.
J Biol Chem ; 296: 100200, 2021.
Article in English | MEDLINE | ID: mdl-33334893

ABSTRACT

Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.


Subject(s)
Complement Activation , Receptors, Complement 3b/immunology , Animals , Cell Line , Complement C3b/immunology , Complement C4b/immunology , Female , Glomerulonephritis/immunology , Glomerulonephritis/therapy , Humans , Mice , Mice, Inbred C57BL , Receptors, Complement 3b/chemistry , Receptors, Complement 3b/therapeutic use , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use
3.
J Immunol ; 205(5): 1433-1440, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32839213

ABSTRACT

Ischemia-reperfusion injury (IRI) is a complex inflammatory process that detrimentally affects the function of transplanted organs. Neutrophils are important contributors to the pathogenesis of renal IRI. Signaling by G-CSF, a regulator of neutrophil development, trafficking, and function, plays a key role in several neutrophil-associated inflammatory disease models. In this study, we investigated whether targeting neutrophils with a neutralizing mAb to G-CSFR would reduce inflammation and protect against injury in a mouse model of warm renal IRI. Mice were treated with anti-G-CSFR 24 h prior to 22-min unilateral renal ischemia. Renal function and histology, complement activation, and expression of kidney injury markers, and inflammatory mediators were assessed 24 h after reperfusion. Treatment with anti-G-CSFR protected against renal IRI in a dose-dependent manner, significantly reducing serum creatinine and urea, tubular injury, neutrophil and macrophage infiltration, and complement activation (plasma C5a) and deposition (tissue C9). Renal expression of several proinflammatory genes (CXCL1/KC, CXCL2/MIP-2, MCP-1/CCL2, CXCR2, IL-6, ICAM-1, P-selectin, and C5aR) was suppressed by anti-G-CSFR, as was the level of circulating P-selectin and ICAM-1. Neutrophils in anti-G-CSFR-treated mice displayed lower levels of the chemokine receptor CXCR2, consistent with a reduced ability to traffic to inflammatory sites. Furthermore, whole transcriptome analysis using RNA sequencing showed that gene expression changes in IRI kidneys after anti-G-CSFR treatment were indistinguishable from sham-operated kidneys without IRI. Hence, anti-G-CSFR treatment prevented the development of IRI in the kidneys. Our results suggest G-CSFR blockade as a promising therapeutic approach to attenuate renal IRI.


Subject(s)
Kidney Diseases/drug therapy , Protective Agents/pharmacology , Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors , Reperfusion Injury/drug therapy , Animals , Chemokines/metabolism , Complement Activation/drug effects , Creatinine/blood , Disease Models, Animal , Gene Expression/drug effects , Inflammation/blood , Inflammation/drug therapy , Inflammation/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/blood , Kidney Diseases/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/metabolism , Reperfusion Injury/blood , Reperfusion Injury/metabolism , Urea/blood
4.
Transplant Direct ; 5(4): e341, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30993186

ABSTRACT

BACKGROUND: Complement activation plays an important role in the pathogenesis of renal ischemia-reperfusion (IR) injury (IRI), but whether this involves damage to the vasculoprotective endothelial glycocalyx is not clear. We investigated the impact of complement activation on glycocalyx integrity and renal dysfunction in a mouse model of renal IRI. METHODS: Right nephrectomized male C57BL/6 mice were subjected to 22 minutes left renal ischemia and sacrificed 24 hours after reperfusion to analyze renal function, complement activation, glycocalyx damage, endothelial cell activation, inflammation, and infiltration of neutrophils and macrophages. RESULTS: Ischemia-reperfusion induced severe renal injury, manifested by significantly increased serum creatinine and urea, complement activation and deposition, loss of glycocalyx, endothelial activation, inflammation, and innate cell infiltration. Treatment with the anti-C5 antibody BB5.1 protected against IRI as indicated by significantly lower serum creatinine (P = 0.04) and urea (P = 0.003), tissue C3b/c and C9 deposition (both P = 0.004), plasma C3b (P = 0.001) and C5a (P = 0.006), endothelial vascular cell adhesion molecule-1 expression (P = 0.003), glycocalyx shedding (tissue heparan sulfate [P = 0.001], plasma syndecan-1 [P = 0.007], and hyaluronan [P = 0.02]), inflammation (high mobility group box-1 [P = 0.0003]), and tissue neutrophil (P = 0.0009) and macrophage (P = 0.004) infiltration. CONCLUSIONS: Together, our data confirm that the terminal pathway of complement activation plays a key role in renal IRI and demonstrate that the mechanism of injury involves shedding of the glycocalyx.

5.
Front Immunol ; 9: 259, 2018.
Article in English | MEDLINE | ID: mdl-29515577

ABSTRACT

Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government's Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti-DFTD immunization trials was remarkable, especially as DFTD is hallmarked by its immune evasion mechanisms. Microsatellite analyzes of MHC revealed that some MHC-I microsatellites correlated to stronger immune responses. These trials signify the first step in the long-term objective of releasing devils with immunity to DFTD into the wild.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines/immunology , Facial Neoplasms/immunology , Immunotherapy/methods , Marsupialia/immunology , Animals , Carboxymethylcellulose Sodium/analogs & derivatives , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Imiquimod/immunology , Immunity, Humoral , Immunization, Secondary , Immunoglobulin G/blood , Male , Poly I-C/immunology , Polylysine/analogs & derivatives , Polylysine/immunology , Tumor Escape
6.
EBioMedicine ; 19: 119-127, 2017 May.
Article in English | MEDLINE | ID: mdl-28408242

ABSTRACT

Influenza is a highly contagious, acute, febrile respiratory infection that can have fatal consequences particularly in individuals with chronic illnesses. Sporadic reports suggest that intravenous immunoglobulin (IVIg) may be efficacious in the influenza setting. We investigated the potential of human IVIg to ameliorate influenza infection in ferrets exposed to either the pandemic H1N1/09 virus (pH1N1) or highly pathogenic avian influenza (H5N1). IVIg administered at the time of influenza virus exposure led to a significant reduction in lung viral load following pH1N1 challenge. In the lethal H5N1 model, the majority of animals given IVIg survived challenge in a dose dependent manner. Protection was also afforded by purified F(ab')2 but not Fc fragments derived from IVIg, supporting a specific antibody-mediated mechanism of protection. We conclude that pre-pandemic IVIg can modulate serious influenza infection-associated mortality and morbidity. IVIg could be useful prophylactically in the event of a pandemic to protect vulnerable population groups and in the critical care setting as a first stage intervention.


Subject(s)
Antibodies, Viral/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections/prevention & control , Animals , Cytokines/genetics , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/physiology , Lung/virology , Pandemics/prevention & control , RNA, Messenger/metabolism , Viral Load , Virus Replication
7.
Sci Rep ; 7: 43827, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276463

ABSTRACT

Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the 'infectious' agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species.


Subject(s)
Facial Neoplasms/immunology , Immunization/methods , Immunotherapy/methods , Marsupialia/immunology , Animals , Antibody Formation/immunology , Facial Neoplasms/therapy , Facial Neoplasms/veterinary , Female , Histocompatibility Antigens Class I/immunology , Immunity, Humoral/immunology , Male , Treatment Outcome
8.
Hum Vaccin Immunother ; 11(2): 377-85, 2015.
Article in English | MEDLINE | ID: mdl-25692970

ABSTRACT

While most pathogens infect via mucosal surfaces, most current vaccines are delivered by injection. This situation remains despite awareness of the potential benefits of mucosal delivery for inducing protection against mucosa-infecting pathogens. A major obstacle to the development of such vaccines is the paucity of safe and effective adjuvants that induce mucosal responses in non-rodents. Previously we demonstrated in sheep the potency of pulmonary-delivered influenza ISCOMATRIX™ vaccine, which induces both mucosal and systemic immunity, even with low antigen doses. In the current study, lung pre-exposure to influenza antigen alone significantly reduced the immune response to subsequent pulmonary-delivered influenza ISCOMATRIX™ vaccine. A single dose of influenza antigen, delivered to the lung without exogenous adjuvant, upregulated IL-10 expression in bronchoalveolar lavage cells and FOXP3 expression in lung tissue, suggestive of induction of a regulatory T cell (Treg) response. However, this effect was inhibited by addition of ISCOMATRIX™ adjuvant. Moreover, effective pulmonary immunization with influenza ISCOMATRIX™ vaccine was associated with a depletion of Treg markers within lung tissues. Lung exposure to influenza antigen induced a localized mucosal tolerance that reduced the efficacy of subsequent influenza ISCOMATRIX™ vaccination. An important role of ISCOMATRIX™ adjuvant in pulmonary vaccination appears to be the depletion of Treg in lung tissues. Pulmonary vaccination remains capable of inducing a strong immune response against mucosal pathogens, but likely requires an adjuvant to overcome mucosal tolerance. ISCOMATRIX™ appears to have considerable potential as a mucosal adjuvant for use in humans, a major unmet need in mucosal vaccine development.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cholesterol/pharmacology , Immune Tolerance/drug effects , Immunity, Mucosal , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/prevention & control , Phospholipids/pharmacology , Saponins/pharmacology , Vaccination/methods , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Drug Combinations , Female , Instillation, Drug , Lung/immunology , Orthomyxoviridae Infections/immunology , Sheep , T-Lymphocytes, Regulatory/drug effects
9.
Vaccine ; 32(30): 3861-8, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24928062

ABSTRACT

In Australia, during the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in post-marketing adverse event reports of febrile seizures (FS) in children under 5 years of age shortly after vaccination with the CSL trivalent influenza vaccine (CSL 2010 SH TIV) compared to previous CSL TIVs and other licensed 2010 SH TIVs. The present study describes the outcomes of a series of in vitro experiments directed at elucidating the root cause. The scientific investigations found that a subset of paediatric donors displayed elevated cytokine/chemokine responses to the CSL 2010 SH TIV but not to previous CSL TIVs nor other 2010 SH TIVs. The induction of elevated cytokines/chemokines in paediatric whole blood correlated with elevated NF-κB activation in a HEK293 cell reporter assay. The data indicate that the introduction of the B/Brisbane/60/2008 strain within the CSL manufacturing process (such as occurred in the preceding 2009/10 NH season) appears to have raised the pyrogenic potential of the CSL 2009/10 NH TIV but that this was insufficient to elicit FS in children <5 years. The 2010 SH season coincided with the first introduction of the H1N1 A/California/07/2009 in combination with the B/Brisbane/60/2008 strain. Our data demonstrates that the introduction of the H1N1 A/California/07/2009 (and to a much lesser degree, H3N2 A/Wisconsin/15/2009) in combination with B/Brisbane/60/2008 (as expressed through the CSL method of manufacture) combined and likely compounded the bioactivity of the CSL 2010 SH TIV. This was associated with stronger immune responses, which in a proportion of children <5 years were associated with FS. The assays and systems developed during these investigations should greatly assist in determining the bioactivity of new influenza strains, and thus aid with the manufacture of CSL TIVs indicated for use in the paediatric population.


Subject(s)
Chemokines/immunology , Cytokines/immunology , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Seizures, Febrile/chemically induced , Australia/epidemiology , Child , Child, Preschool , HEK293 Cells , Humans , Infant , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza Vaccines/immunology , NF-kappa B/metabolism , Product Surveillance, Postmarketing
10.
Vaccine ; 32(30): 3869-76, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24681272

ABSTRACT

In Australia, during the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in post-marketing adverse event reports of febrile seizures (FS) in children under 5 years of age shortly after vaccination with the CSL 2010 SH trivalent influenza vaccine (CSL 2010 SH TIV) compared to previous CSL TIVs and other licensed 2010 SH TIVs. In an accompanying study, we described the contribution to these adverse events of the 2010 SH influenza strains as expressed in the CSL 2010 SH TIV using in vitro cytokine/chemokine secretion from whole blood cells and induction of NF-κB activation in HEK293 reporter cells. The aim of the present study was to identify the root cause components that elicited the elevated cytokine/chemokine and NF-κB signature. Our studies demonstrated that the pyrogenic signal was associated with a heat-labile, viral-derived component(s) in the CSL 2010 SH TIV. Further, it was found that viral lipid-mediated delivery of short, fragmented viral RNA was the key trigger for the increased cytokine/chemokine secretion and NF-κB activation. It is likely that the FS reported in children <5 years were due to a combination of the new influenza strains included in the 2010 SH TIV and the CSL standard method of manufacture preserving strain-specific viral components of the new influenza strains (particularly B/Brisbane/60/2008 and to a lesser extent H1N1 A/California/07/2009). These combined to heighten immune activation of innate immune cells, which in a small proportion of children <5 years of age is associated with the occurrence of FS. The data also demonstrates that CSL TIVs formulated with increased levels of splitting agent (TDOC) for the B/Brisbane/60/2008 strain can attenuate the pro-inflammatory signals in vitro, identifying a potential path forward for generating a CSL TIV indicated for use in children <5 years.


Subject(s)
Influenza Vaccines/adverse effects , Lipids/administration & dosage , RNA, Viral/administration & dosage , Seizures, Febrile/chemically induced , Australia/epidemiology , Chemokines/immunology , Child, Preschool , Cytokines/immunology , Drug Carriers/administration & dosage , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype , Influenza B virus , Influenza, Human/prevention & control , NF-kappa B/metabolism , Product Surveillance, Postmarketing
11.
J Neurotrauma ; 30(12): 1023-34, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23557244

ABSTRACT

Blocking the action of inhibitory molecules at sites of central nervous system injury has been proposed as a strategy to promote axonal regeneration and functional recovery. We have previously shown that genetic deletion or competitive antagonism of EphA4 receptor activity promotes axonal regeneration and functional recovery in a mouse model of lateral hemisection spinal cord injury. Here we have assessed the effect of blocking EphA4 activation using the competitive antagonist EphA4-Fc in a rat model of thoracic contusive spinal cord injury. Using a ledged tapered balance beam and open-field testing, we observed significant improvements in recovery of locomotor function after EphA4-Fc treatment. Consistent with functional improvement, using high-resolution ex vivo magnetic resonance imaging at 16.4T, we found that rats treated with EphA4-Fc had a significantly increased cross-sectional area of the dorsal funiculus caudal to the injury epicenter compared with controls. Our findings indicate that EphA4-Fc promotes functional recovery following contusive spinal cord injury and provides further support for the therapeutic benefit of treatment with the competitive antagonist in acute cases of spinal cord injury.


Subject(s)
Immunoglobulin Fc Fragments/pharmacology , Receptor, EphA4/antagonists & inhibitors , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Animals , Blotting, Western , Brain/drug effects , Brain/pathology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Humans , Magnetic Resonance Imaging , Rats , Rats, Wistar , Recombinant Fusion Proteins/pharmacology , Spinal Cord Injuries/pathology , Transfection
12.
PLoS One ; 8(3): e59934, 2013.
Article in English | MEDLINE | ID: mdl-23544110

ABSTRACT

Cholera toxin (CT) is a mucosal adjuvant capable of inducing strong immune responses to co-administered antigens following oral or intranasal immunization of mice. To date, the direct effect of CT on antigen-specific CD4(+) T cell migration and proliferation profiles in vivo is not well characterized. In this study, the effect of CT on the migration pattern and proliferative responses of adoptively transferred, CD4(+) TCR transgenic T cells in orally or intranasally vaccinated mice, was analyzed by flow cytometry. GFP-expressing or CFSE-labeled OT-II lymphocytes were adoptively transferred to naïve C57BL/6 mice, and mice were subsequently vaccinated with OVA with or without CT via the oral or intranasal route. CT did not alter the migration pattern of antigen-specific T cells, regardless of the route of immunization, but increased the number of transgenic CD4(+) T cells in draining lymphoid tissue. This increase in the number of transgenic CD4(+) T cells was not due to cells undergoing more rounds of cellular division in vivo, suggesting that CT may exert an indirect adjuvant effect on CD4(+) T cells. The findings reported here suggest that CT functions as a mucosal adjuvant by increasing the number of antigen specific CD4(+) T cells independent of their migration pattern or kinetics of cellular division.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Division/immunology , Cell Movement/immunology , Cholera Toxin/administration & dosage , Cholera Toxin/pharmacology , Epitopes/immunology , Mucous Membrane/immunology , Administration, Intranasal , Administration, Oral , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Division/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Dendritic Cells/cytology , Dendritic Cells/drug effects , Evans Blue/metabolism , Fluoresceins/metabolism , Green Fluorescent Proteins/metabolism , Histocompatibility Antigens Class II/metabolism , Kinetics , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mucous Membrane/drug effects , Ovalbumin/immunology , Peptides/pharmacology , Succinimides/metabolism
13.
PLoS One ; 8(2): e55948, 2013.
Article in English | MEDLINE | ID: mdl-23390555

ABSTRACT

The EphA4 receptor tyrosine kinase is a major regulator of axonal growth and astrocyte reactivity and is a possible inflammatory mediator. Given that multiple sclerosis (MS) is primarily an inflammatory demyelinating disease and in mouse models of MS, such as experimental autoimmune encephalomyelitis (EAE), axonal degeneration and reactive gliosis are prominent clinical features, we hypothesised that endogenous EphA4 could play a role in modulating EAE. EAE was induced in EphA4 knockout and wildtype mice using MOG peptide immunisation and clinical severity and histological features of the disease were then compared in lumbar spinal cord sections. EphA4 knockout mice exhibited a markedly less severe clinical course than wildtype mice, with a lower maximum disease grade and a slightly later onset of clinical symptoms. Numbers of infiltrating T cells and macrophages, the number and size of the lesions, and the extent of astrocytic gliosis were similar in both genotypes; however, EphA4 knockout mice appeared to have decreased axonal pathology. Blocking of EphA4 in wildtype mice by administration of soluble EphA4 (EphA4-Fc) as a decoy receptor following induction of EAE produced a delay in onset of clinical symptoms; however, most mice had clinical symptoms of similar severity by 22 days, indicating that EphA4 blocking treatment slowed early EAE disease evolution. Again there were no apparent differences in histopathology. To determine whether the role of EphA4 in modulating EAE was CNS mediated or due to an altered immune response, MOG primed T cells from wildtype and EphA4 knockout mice were passively transferred into naive recipient mice and both were shown to induce disease of equivalent severity. These results are consistent with a non-inflammatory, CNS specific, deleterious effect of EphA4 during neuroinflammation that results in axonal pathology.


Subject(s)
Astrocytes/immunology , Axons/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Receptor, EphA4/genetics , Spinal Cord/immunology , Adoptive Transfer , Animals , Astrocytes/pathology , Axons/pathology , Cell Movement , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Deletion , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/pharmacology , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein/pharmacology , Peptide Fragments/immunology , Peptide Fragments/pharmacology , Receptor, EphA4/antagonists & inhibitors , Receptor, EphA4/immunology , Severity of Illness Index , Spinal Cord/drug effects , Spinal Cord/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , T-Lymphocytes/transplantation
14.
J Virol ; 87(6): 3053-61, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23283953

ABSTRACT

In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO(4) or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.


Subject(s)
Antibodies, Viral/blood , Cross Protection , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Viral Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Ferrets , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza Vaccines/administration & dosage , Injections, Intramuscular , Orthomyxoviridae Infections/immunology , Survival Analysis
15.
Vaccine ; 30(51): 7400-6, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23063831

ABSTRACT

During the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in the number of febrile reactions reported in the paediatric population in Australia shortly after vaccination with the CSL 2010 trivalent influenza vaccine (TIV) compared to previous seasons. A series of scientific investigations were initiated to identify the root cause of these adverse events, including in vitro cytokine/chemokine assays following stimulation of adult and paediatric whole blood, as well as mammalian cell lines and primary cells, profiling of molecular signatures using microarrays, and in vivo studies in rabbits, ferrets, new born rats and rhesus non-human primates (NHPs). Various TIVs (approved commercial vaccines as well as re-engineered TIVs) and their individual monovalent pool harvest (MPH) components were examined in these assays and in animal models. Although the scientific investigations are ongoing, the current working hypothesis is that the increase in febrile adverse events reported in Australia after vaccination with the CSL 2010 SH TIV may be due to a combination of both the introduction of three entirely new strains in the CSL 2010 SH TIV, and differences in the manufacturing processes used to manufacture CSL TIVs compared to other licensed TIVs on the market. Identification of the causal component(s) may result in the identification of surrogate assays that can assist in the formulation of TIVs to minimise the future incidence of febrile reactions in the paediatric population.


Subject(s)
Fever/chemically induced , Fever/etiology , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Adolescent , Adult , Animals , Australia , Cells, Cultured , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Influenza Vaccines/administration & dosage , Male
16.
Vaccine ; 30(24): 3618-23, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22464969

ABSTRACT

The pandemic H1N1 2009 influenza virus caused relatively mild disease in most infected people but some suffered extensively from primary lung infection, many more than would have occurred with seasonal influenza infection. Early commercially available pandemic H1N1 vaccines did not contain adjuvant, as did many of the subsequent vaccines, and could not stop infection with the pandemic virus in vaccinated ferrets. Nevertheless, we showed that virus loads in the lungs were greatly diminished in ferrets vaccinated once with an unadjuvanted pandemic vaccine and challenged with 10(6)EID(50) wildtype A/California/07/2009 (H1N1). In addition, a single inoculation with seasonal vaccine showed beneficial reduction in pandemic pulmonary virus loads in the absence of any detectable cross-reactive serological responses. Ferrets primed with either seasonal or pandemic vaccine and then boosted with pandemic vaccine also showed less extensive lung infection when challenged with a tenfold higher dose of pandemic virus. These results implicate non-classical protective mechanisms that prevent severe pulmonary disease but not viral shedding and imply that particular non-adjuvanted vaccines may have retained the ability to induce these responses.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Lung/immunology , Lung/virology , Animals , Female , Ferrets , Male , Viral Load , Virus Shedding
17.
Clin Vaccine Immunol ; 19(1): 79-83, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072721

ABSTRACT

Pulmonary delivery of an influenza Iscomatrix adjuvant vaccine induces a strong systemic and mucosal antibody response. Since an influenza vaccine needs to induce immunological memory that lasts at least 1 year for utility in humans, we examined the longevity of the immune response induced by such a pulmonary vaccination, with and without antigen challenge. Sheep were vaccinated in the deep lung with an influenza Iscomatrix vaccine, and serum and lung antibody levels were quantified for up to 1 year. The immune memory response to these vaccinations was determined following antigen challenge via lung delivery of influenza antigen at 6 months and 1 year postvaccination. Pulmonary vaccination of sheep with the influenza Iscomatrix vaccine induced antigen-specific antibodies in both sera and lungs that were detectable until 6 months postimmunization. Importantly, a memory recall response following antigenic challenge was detected at 12 months post-lung vaccination, including the induction of functional antibodies with hemagglutination inhibition activity. Pulmonary delivery of an influenza Iscomatrix vaccine induces a long-lived influenza virus-specific antibody and memory response of suitable length for annual vaccination against influenza.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Cholesterol/administration & dosage , Immunologic Memory , Influenza Vaccines/immunology , Phospholipids/administration & dosage , Saponins/administration & dosage , Vaccination/methods , Administration, Inhalation , Animals , Antibodies, Viral/analysis , Antibodies, Viral/blood , Blood/immunology , Drug Combinations , Female , Hemagglutination Inhibition Tests , Influenza Vaccines/administration & dosage , Lung/immunology , Sheep , Time Factors
18.
PLoS One ; 6(9): e24636, 2011.
Article in English | MEDLINE | ID: mdl-21931787

ABSTRACT

Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.


Subject(s)
Axons/physiology , Nerve Regeneration/drug effects , Receptor, EphA4/metabolism , Recombinant Proteins/therapeutic use , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Animals , Axons/drug effects , Axons/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Receptor, EphA4/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
Vaccine ; 28(14): 2593-7, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20096391

ABSTRACT

Deep pulmonary delivery of an influenza ISCOMATRIX vaccine has previously been shown to induce a combined mucosal and systemic antibody response. To explore whether this combined response is influenced by intrinsic properties of the component antigen, we examined the efficacy of deep pulmonary delivery of ISCOMATRIX vaccines containing different recombinant antigens, specifically gB glycoprotein from cytomegalovirus and a fragment of catalase from Helicobacter pylori. Both these vaccines induced antigen-specific mucosal and systemic immunity, as well as antigen-specific proliferative cellular responses. Pulmonary immunisation with ISCOMATRIX vaccines may therefore be a generic way of inducing combined systemic and mucosal immunity.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Bacterial/immunology , Antigens, Viral/immunology , Cholesterol/administration & dosage , Phospholipids/administration & dosage , Saponins/administration & dosage , Administration, Inhalation , Animals , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Catalase/immunology , Cell Proliferation , Drug Combinations , Female , Helicobacter pylori/enzymology , Injections, Subcutaneous , Lymphocytes/immunology , Sheep , Vaccines, Synthetic/immunology , Viral Envelope Proteins/immunology
20.
J Virol ; 83(15): 7770-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19457991

ABSTRACT

As part of influenza pandemic preparedness, policy decisions need to be made about how best to utilize vaccines once they are manufactured. Since H5N1 avian influenza virus has the potential to initiate the next human pandemic, isolates of this subtype have been used for the production and testing of prepandemic vaccines. Clinical trials of such vaccines indicate that two injections of preparations containing adjuvant will be required to induce protective immunity. However, this is a working assumption based on classical serological measures only. Examined here are the dose of viral hemagglutinin (HA) and the number of inoculations required for two different H5N1 vaccines to achieve protection in ferrets after lethal H5N1 challenge. Ferrets inoculated twice with 30 microg of A/Vietnam/1194/2004 HA vaccine with AlPO4, or with doses as low as 3.8 microg of HA with Iscomatrix (ISCOMATRIX, referred to as Iscomatrix herein, is a registered trademark of CSL Limited) adjuvant, were completely protected against death and disease after H5N1 challenge, and the protection lasted at least 15 months. Cross-clade protection was also observed with both vaccines. Significantly, complete protection against death could be achieved with only a single inoculation of H5N1 vaccine containing as little as 15 microg of HA with AlPO4 or 3.8 microg of HA with Iscomatrix adjuvant. Ferrets vaccinated with the single-injection Iscomatrix vaccines showed fewer clinical manifestations of infection than those given AlPO4 vaccines and remained highly active. Our data provide the first indication that in the event of a future influenza pandemic, effective mass vaccination may be achievable with a low-dose "single-shot" vaccine and provide not only increased survival but also significant reduction in disease severity.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Animals , Antibodies, Viral/blood , Female , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunization , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Male , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...