Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Math Biol ; 87(2): 26, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37428265

ABSTRACT

Data taking values on discrete sample spaces are the embodiment of modern biological research. "Omics" experiments based on high-throughput sequencing produce millions of symbolic outcomes in the form of reads (i.e., DNA sequences of a few dozens to a few hundred nucleotides). Unfortunately, these intrinsically non-numerical datasets often deviate dramatically from natural assumptions a practitioner might make, and the possible sources of this deviation are usually poorly characterized. This contrasts with numerical datasets where Gaussian-type errors are often well-justified. To overcome this hurdle, we introduce the notion of latent weight, which measures the largest expected fraction of samples from a probabilistic source that conform to a model in a class of idealized models. We examine various properties of latent weights, which we specialize to the class of exchangeable probability distributions. As proof of concept, we analyze DNA methylation data from the 22 human autosome pairs. Contrary to what is usually assumed in the literature, we provide strong evidence that highly specific methylation patterns are overrepresented at some genomic locations when latent weights are taken into account.


Subject(s)
Genome , Genomics , Humans , Probability , High-Throughput Nucleotide Sequencing
2.
J Neurosci ; 34(48): 15962-74, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25429138

ABSTRACT

TDP-43 is an RNA-binding protein linked to amyotrophic lateral sclerosis (ALS) that is known to regulate the splicing, transport, and storage of specific mRNAs into stress granules. Although TDP-43 has been shown to interact with translation factors, its role in protein synthesis remains unclear, and no in vivo translation targets have been reported to date. Here we provide evidence that TDP-43 associates with futsch mRNA in a complex and regulates its expression at the neuromuscular junction (NMJ) in Drosophila. In the context of TDP-43-induced proteinopathy, there is a significant reduction of futsch mRNA at the NMJ compared with motor neuron cell bodies where we find higher levels of transcript compared with controls. TDP-43 also leads to a significant reduction in Futsch protein expression at the NMJ. Polysome fractionations coupled with quantitative PCR experiments indicate that TDP-43 leads to a futsch mRNA shift from actively translating polysomes to nontranslating ribonuclear protein particles, suggesting that in addition to its effect on localization, TDP-43 also regulates the translation of futsch mRNA. We also show that futsch overexpression is neuroprotective by extending life span, reducing TDP-43 aggregation, and suppressing ALS-like locomotor dysfunction as well as NMJ abnormalities linked to microtubule and synaptic stabilization. Furthermore, the localization of MAP1B, the mammalian homolog of Futsch, is altered in ALS spinal cords in a manner similar to our observations in Drosophila motor neurons. Together, our results suggest a microtubule-dependent mechanism in motor neuron disease caused by TDP-43-dependent alterations in futsch mRNA localization and translation in vivo.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Drosophila Proteins/genetics , Microtubule-Associated Proteins/genetics , RNA, Messenger/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/prevention & control , Animals , Animals, Genetically Modified , DNA-Binding Proteins/biosynthesis , Drosophila , Drosophila Proteins/biosynthesis , Female , Gene Targeting/methods , Humans , Male , Microtubule-Associated Proteins/biosynthesis , Middle Aged , RNA, Messenger/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...