Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37798120

ABSTRACT

Decades of research have sought to determine the intrinsic and extrinsic mechanisms underpinning the regulation of neural progenitor maintenance and differentiation. A series of precise temporal transitions within progenitor cell populations generates all the appropriate neural cell types while maintaining a pool of self-renewing progenitors throughout embryogenesis. Recent technological advances have enabled us to gain new insights at the single-cell level, revealing an interplay between metabolic state and developmental progression that impacts the timing of proliferation and neurogenesis. This can have long-term consequences for the developing brain's neuronal specification, maturation state, and organization. Furthermore, these studies have highlighted the need to reassess the instructive role of glucose metabolism in determining progenitor cell division, differentiation, and fate. This review focuses on glucose metabolism (glycolysis) in cortical progenitor cells and the emerging focus on glycolysis during neurogenic transitions. Furthermore, we discuss how the field can learn from other biological systems to improve our understanding of the spatial and temporal changes in glycolysis in progenitors and evaluate functional neurological outcomes.


Subject(s)
Glucose , Neurons , Neurons/metabolism , Cell Differentiation/physiology , Glucose/metabolism , Biology , Brain
2.
Stem Cell Reports ; 17(10): 2220-2238, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36179695

ABSTRACT

Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are a promising system for studying the distinct features of the developing human brain and the underlying causes of many neurological disorders. While organoid technology is steadily advancing, many challenges remain, including potential batch-to-batch and cell-line-to-cell-line variability, and structural inconsistency. Here, we demonstrate that a major contributor to cortical organoid quality is the way hPSCs are maintained prior to differentiation. Optimal results were achieved using particular fibroblast-feeder-supported hPSCs rather than feeder-independent cells, differences that were reflected in their transcriptomic states at the outset. Feeder-supported hPSCs displayed activation of diverse transforming growth factor ß (TGFß) superfamily signaling pathways and increased expression of genes connected to naive pluripotency. We further identified combinations of TGFß-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enhance the formation of well-structured brain tissues suitable for disease modeling.


Subject(s)
Organoids , Pluripotent Stem Cells , Cell Differentiation/physiology , Humans , Organoids/metabolism , Pluripotent Stem Cells/metabolism , Telencephalon/metabolism , Transforming Growth Factor beta/metabolism
3.
Proc Natl Acad Sci U S A ; 119(19): e2204159119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35507877
4.
J Cardiovasc Dev Dis ; 8(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669620

ABSTRACT

Heart disease remains the single largest cause of death in developed countries, and novel therapeutic interventions are desperately needed to alleviate this growing burden. The cardiac lymphatic system is the long-overlooked counterpart of the coronary blood vasculature, but its important roles in homeostasis and disease are becoming increasingly apparent. Recently, the cardiac lymphatic vasculature in zebrafish has been described and its role in supporting the potent regenerative response of zebrafish heart tissue investigated. In this review, we discuss these findings in the wider context of lymphatic development, evolution and the promise of this system to open new therapeutic avenues to treat myocardial infarction and other cardiopathologies.

5.
Elife ; 82019 11 08.
Article in English | MEDLINE | ID: mdl-31702553

ABSTRACT

The cardiac lymphatic vascular system and its potentially critical functions in heart patients have been largely underappreciated, in part due to a lack of experimentally accessible systems. We here demonstrate that cardiac lymphatic vessels develop in young adult zebrafish, using coronary arteries to guide their expansion down the ventricle. Mechanistically, we show that in cxcr4a mutants with defective coronary artery development, cardiac lymphatic vessels fail to expand onto the ventricle. In regenerating adult zebrafish hearts the lymphatic vasculature undergoes extensive lymphangiogenesis in response to a cryoinjury. A significant defect in reducing the scar size after cryoinjury is observed in zebrafish with impaired Vegfc/Vegfr3 signaling that fail to develop intact cardiac lymphatic vessels. These results suggest that the cardiac lymphatic system can influence the regenerative potential of the myocardium.


Subject(s)
Heart/physiology , Lymphangiogenesis/physiology , Lymphatic Vessels/physiopathology , Myocardium/metabolism , Zebrafish/physiology , Animals , Animals, Genetically Modified , Coronary Vessels/metabolism , Coronary Vessels/physiology , Gene Expression Regulation, Developmental , Heart/growth & development , Humans , Lymphangiogenesis/genetics , Lymphatic Vessels/injuries , Lymphatic Vessels/metabolism , Mutation , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Regeneration/genetics , Regeneration/physiology , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
PLoS Biol ; 16(2): e2003127, 2018 02.
Article in English | MEDLINE | ID: mdl-29389974

ABSTRACT

During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN) progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Cycle/genetics , Motor Neurons/cytology , Neurogenesis/genetics , Oligodendrocyte Transcription Factor 2/physiology , Repressor Proteins/physiology , Single-Cell Analysis , Transcription Factor HES-1/physiology , Transcriptome , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Fluorescent Dyes/metabolism , Gene Expression Regulation/physiology , Genes, Reporter , Interneurons/cytology , Mice, Transgenic , Oligodendrocyte Transcription Factor 2/genetics , Receptors, Notch/metabolism , Regulatory Sequences, Nucleic Acid , Repressor Proteins/genetics , Signal Transduction , Transcription Factor HES-1/genetics
7.
Cell Rep ; 21(2): 517-532, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29020636

ABSTRACT

The human cerebral cortex possesses distinct structural and functional features that are not found in the lower species traditionally used to model brain development and disease. Accordingly, considerable attention has been placed on the development of methods to direct pluripotent stem cells to form human brain-like structures termed organoids. However, many organoid differentiation protocols are inefficient and display marked variability in their ability to recapitulate the three-dimensional architecture and course of neurogenesis in the developing human brain. Here, we describe optimized organoid culture methods that efficiently and reliably produce cortical and basal ganglia structures similar to those in the human fetal brain in vivo. Neurons within the organoids are functional and exhibit network-like activities. We further demonstrate the utility of this organoid system for modeling the teratogenic effects of Zika virus on the developing brain and identifying more susceptibility receptors and therapeutic compounds that can mitigate its destructive actions.


Subject(s)
Anti-Retroviral Agents/pharmacology , Cerebral Cortex/cytology , Drug Evaluation, Preclinical/methods , Organoids/virology , Primary Cell Culture/methods , Zika Virus/drug effects , Cell Line , Cerebral Cortex/virology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/virology , Humans , Neurons/cytology , Neurons/metabolism , Neurons/virology , Organoids/cytology , Organoids/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , STAT3 Transcription Factor/metabolism , c-Mer Tyrosine Kinase/metabolism
8.
Curr Biol ; 24(23): R1127-9, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25465332

ABSTRACT

Hindbrain cranial motor neurons are organized into discrete functional clusters. A new study demonstrates that coalescence of these nuclei is driven by the expression of distinct combinations of cadherin adhesion molecules by each motor neuron group.


Subject(s)
Avian Proteins/metabolism , Cadherins/metabolism , Cranial Nerves/metabolism , Gene Expression Regulation, Developmental , Motor Neurons/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...