Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0289778, 2023.
Article in English | MEDLINE | ID: mdl-37540694

ABSTRACT

PKD1 is the most commonly mutated gene causing autosomal dominant polycystic kidney disease (ADPKD). It encodes Polycystin-1 (PC1), a putative membrane protein that undergoes a set of incompletely characterized post-transcriptional cleavage steps and has been reported to localize in multiple subcellular locations, including the primary cilium and mitochondria. However, direct visualization of PC1 and detailed characterization of its binding partners remain challenging. We now report a new mouse model with HA epitopes and eGFP knocked-in frame into the endogenous mouse Pkd1 gene by CRISPR/Cas9. Using this model, we sought to visualize endogenous PC1-eGFP and performed affinity-purification mass spectrometry (AP-MS) and network analyses. We show that the modified Pkd1 allele is fully functional but the eGFP-tagged protein cannot be detected without signal amplification by secondary antibodies. Using nanobody-coupled beads and large quantities of tissue, AP-MS identified an in vivo PC1 interactome, which is enriched for mitochondrial proteins and components of metabolic pathways. These studies suggest this mouse model and interactome data will be useful to understand PC1 function, but that new methods and brighter tags will be required to track endogenous PC1.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Mice , Animals , TRPP Cation Channels/chemistry , Polycystic Kidney, Autosomal Dominant/genetics , Disease Models, Animal
2.
NMR Biomed ; 32(1): e4031, 2019 01.
Article in English | MEDLINE | ID: mdl-30431194

ABSTRACT

While zebrafish embryos in the first five days after fertilization are clear and amenable to optical analysis, older juveniles and adults are not, due to pigmentation development and tissue growth. Thus other imaging methods are needed to image adult specimens. NMR is a versatile tool for studies of biological systems and has been successfully used for in vivo zebrafish microscopy. In this work we use NMR microscopy (MRM) for assessment of zebrafish specimens, which includes imaging of formalin fixed (FF), formalin fixed and paraffin embedded (FFPE), fresh (unfixed), and FF gadolinium doped specimens. To delineate the size and shape of various organs we concentrated on 3D MRM. We have shown that at 7 T a 3D NMR image can be obtained with isotropic resolution of 50 µm/pxl within 10 min and 25 µm/pxl within 4 h. Also, we have analyzed sources of contrast and have found that in FF specimens the best contrast is obtained by T1 weighting (3D FLASH, 3D FISP), whereas in FFPE specimens T2 weighting (3D RARE) is the best. We highlight an approach to perform segmentation of the organs in order to study morphological changes associated with mutations. The broader implication of this work is development of NMR methodology for high contrast and high resolution serial imaging and automated analysis of morphology of various zebrafish mutants.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Spectroscopy , Microscopy/methods , Zebrafish/physiology , Animals , Gadolinium/chemistry , Paraffin Embedding , Tissue Fixation
SELECTION OF CITATIONS
SEARCH DETAIL
...