Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 226(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37967370

ABSTRACT

The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae  Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , mRNA Cleavage and Polyadenylation Factors , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , Mutation , RNA Polymerase II/metabolism , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
3.
Cell Rep ; 26(7): 1919-1933.e5, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30759400

ABSTRACT

The yeast protein Ipa1 was recently discovered to interact with the Ysh1 endonuclease of the pre-mRNA cleavage and polyadenylation (C/P) machinery, and Ipa1 mutation impairs 3'end processing. We report that Ipa1 globally promotes proper transcription termination and poly(A) site selection, but with variable effects on genes depending upon the specific configurations of polyadenylation signals. Our findings suggest that the role of Ipa1 in termination is mediated through interaction with Ysh1, since Ipa1 mutation leads to decrease in Ysh1 and poor recruitment of the C/P complex to a transcribed gene. The Ipa1 association with transcriptionally active chromatin resembles that of elongation factors, and the mutant shows defective Pol II elongation kinetics in vivo. Ysh1 overexpression in the Ipa1 mutant rescues the termination defect, but not the mutant's sensitivity to 6-azauracil, an indicator of defective elongation. Our findings support a model in which an Ipa1/Ysh1 complex helps coordinate transcription elongation and 3' end processing.


Subject(s)
Endonucleases/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , RNA Polymerase II/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription, Genetic
4.
Cell Rep ; 20(10): 2490-2500, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28877480

ABSTRACT

Expansions of microsatellite repeats are responsible for numerous hereditary diseases in humans, including myotonic dystrophy and Friedreich's ataxia. Whereas the length of an expandable repeat is the main factor determining disease inheritance, recent data point to genomic trans modifiers that can impact the likelihood of expansions and disease progression. Detection of these modifiers may lead to understanding and treating repeat expansion diseases. Here, we describe a method for the rapid, genome-wide identification of trans modifiers for repeat expansion in a yeast experimental system. Using this method, we found that missense mutations in the endoribonuclease subunit (Ysh1) of the mRNA cleavage and polyadenylation complex dramatically increase the rate of (GAA)n repeat expansions but only when they are actively transcribed. These expansions correlate with slower transcription elongation caused by the ysh1 mutation. These results reveal an interplay between RNA processing and repeat-mediated genome instability, confirming the validity of our approach.


Subject(s)
Friedreich Ataxia/metabolism , RNA, Messenger/genetics , DNA Replication/genetics , DNA Replication/physiology , Friedreich Ataxia/genetics , Genomic Instability/genetics , Genomic Instability/physiology , Humans , Mutation/genetics , Point Mutation/genetics , Polyadenylation/genetics , Polyadenylation/physiology , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeat Expansion/physiology , Trinucleotide Repeats/genetics
5.
Cell Rep ; 9(3): 821-8, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25437538

ABSTRACT

Current models of transcription termination factor recruitment to the RNA polymerase II (Pol II) transcription complex rely exclusively on the direct interaction between the termination factor and phosphorylated isoforms of the Pol II C-terminal domain (CTD). Here, we report that the Pol II flap loop is needed for physical interaction of Pol II with the Pcf11/Clp1 subcomplex of cleavage factor IA (CF IA), which functions in both 3? end processing and Pol II termination, and for proper termination of short RNAs in vitro and in vivo. Deletion of the flap loop reduces the in vivo interaction of Pol II with CF IA but increases the association of Nrd1 during stages of the transcription cycle when the CTD is predominantly Ser5 phosphorylated. We propose a model in which the flap loop coordinates a binding equilibrium between the competing termination factors Pcf11 and Nrd1 to Pol II during termination of short RNA synthesis.


Subject(s)
Conserved Sequence , Evolution, Molecular , Genes, Fungal , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Amino Acid Sequence , DNA, Intergenic , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Structure, Secondary , RNA, Messenger/metabolism , RNA, Small Nucleolar/genetics , Sequence Deletion , Structure-Activity Relationship
6.
J Biol Chem ; 288(27): 19750-9, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23689372

ABSTRACT

Proper RNA polymerase II (Pol II) transcription termination is essential to generate stable transcripts, to prevent interference at downstream loci, and to recycle Pol II back to the promoter (1-3). As such, termination is an intricately controlled process that is tightly regulated by a variety of different cis- and trans-acting factors (4, 5). Although many eukaryotic termination factors have been identified to date, the details of the precise molecular mechanisms governing termination remain to be elucidated. We devised an in vitro transcription system to study specific Pol II termination. We show for the first time that the exonucleolytic Rat1·Rai1 complex can elicit the release of stalled Pol II in vitro and can do so in the absence of other factors. We also find that Rtt103, which interacts with the Pol II C-terminal domain (CTD) and with Rat1, can rescue termination activity of an exonucleolytically deficient Rat1 mutant. In light of our findings, we posit a model whereby functional nucleolytic activity is not the feature of Rat1 that ultimately promotes termination. Degradation of the nascent transcript allows Rat1 to pursue Pol II in a guided fashion and arrive at the site of RNA exit from Pol II. Upon this arrival, however, it is perhaps the specific and direct contact between Rat1 and Pol II that transmits the signal to terminate transcription.


Subject(s)
Exoribonucleases/metabolism , Multiprotein Complexes/metabolism , Promoter Regions, Genetic/physiology , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Termination, Genetic/physiology , Exoribonucleases/genetics , Models, Biological , Multiprotein Complexes/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Polymerase II/genetics , RNA Stability/physiology , RNA-Binding Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
7.
Nat Rev Mol Cell Biol ; 12(5): 283-94, 2011 May.
Article in English | MEDLINE | ID: mdl-21487437

ABSTRACT

The pervasiveness of RNA synthesis in eukaryotes is largely the result of RNA polymerase II (Pol II)-mediated transcription, and termination of its activity is necessary to partition the genome and maintain the proper expression of neighbouring genes. Despite its ever-increasing biological significance, transcription termination remains one of the least understood processes in gene expression. However, recent mechanistic studies have revealed a striking convergence among several overlapping models of termination, including the poly(A)- and Sen1-dependent pathways, as well as new insights into the specificity of Pol II termination among its diverse gene targets. Broader knowledge of the role of Pol II carboxy-terminal domain phosphorylation in promoting alternative mechanisms of termination has also been gained.


Subject(s)
Poly A/genetics , RNA Polymerase II/metabolism , RNA, Messenger/genetics , Transcription, Genetic/genetics , Animals , Humans , Models, Genetic , Protein Binding , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...