Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(11): e23233, 2023 11.
Article in English | MEDLINE | ID: mdl-37823221

ABSTRACT

Mucus plugging and non-resolving inflammation are inherent features of cystic fibrosis (CF) that may lead to progressive lung disease and exercise intolerance, which are the main causes of morbidity and mortality for people with CF. Therefore, understanding the influence of mucus on basic mechanisms underlying the inflammatory response and identifying strategies to resolve mucus-driven airway inflammation and consequent morbidity in CF are of wide interest. Here, we investigated the effects of the proresolving lipid mediator resolvin (Rv) D1 on mucus-related inflammation as a proof-of-concept to alleviate the burden of lung disease and restore exercise intolerance in CF. We tested the effects of RvD1 on inflammatory responses of human organotypic airways and leukocytes to CF mucus and of humanized mice expressing the epithelial Na + channel (ßENaC-Tg) having CF-like mucus obstruction, lung disease, and physical exercise intolerance. RvD1 reduced pathogenic phenotypes of CF-airway supernatant (ASN)-stimulated human neutrophils, including loss of L-selectin shedding and CD16. RNASeq analysis identified select transcripts and pathways regulated by RvD1 in ASN-stimulated CF bronchial epithelial cells that are involved in sugar metabolism, NF-κB activation and inflammation, and response to stress. In in vivo inflammation using ßENaC TG mice, RvD1 reduced total leukocytes, PMN, and interstitial Siglec-MΦ when given at 6-8 weeks of age, and in older mice at 10-12 weeks of age, along with the decrease of pro-inflammatory chemokines and increase of anti-inflammatory IL-10. Furthermore, RvD1 treatment promoted the resolution of pulmonary exacerbation caused by Pseudomonas aeruginosa infection and significantly enhanced physical activity and energy expenditure associated with mucus obstruction, which was impaired in ßENaC-Tg mice compared with wild-type. These results demonstrate that RvD1 can rectify features of CF and offer proof-of-concept for its therapeutic application in this and other muco-obstructive lung diseases.


Subject(s)
Cystic Fibrosis , Humans , Mice , Animals , Cystic Fibrosis/genetics , Exercise Tolerance , Lung/metabolism , Inflammation/metabolism
2.
Front Pharmacol ; 12: 702677, 2021.
Article in English | MEDLINE | ID: mdl-34566635

ABSTRACT

Neutrophilic inflammation is a key determinant of cystic fibrosis (CF) lung disease. Neutrophil-derived free DNA, released in the form of extracellular traps (NETs), significantly correlates with impaired lung function in patients with CF, underlying their pathogenetic role in CF lung disease. Thus, specific approaches to control NETosis of neutrophils migrated into the lungs may be clinically relevant in CF. We investigated the efficacy of phosphodiesterase (PDE) type-4 inhibitors, in vitro, on NET release by neutrophils from healthy volunteers and individuals with CF, and in vivo, on NET accumulation and lung inflammation in mice infected with Pseudomonas aeruginosa. PDE4 blockade curbed endotoxin-induced NET production and preserved cellular integrity and apoptosis in neutrophils, from healthy subjects and patients with CF, challenged with endotoxin, in vitro. The pharmacological effects of PDE4 inhibitors were significantly more evident on CF neutrophils. In a mouse model of Pseudomonas aeruginosa chronic infection, aerosol treatment with roflumilast, a selective PDE4 inhibitor, gave a significant reduction in free DNA in the BALF. This was accompanied by reduced citrullination of histone H3 in neutrophils migrated into the airways. Roflumilast-treated mice showed a significant improvement in weight recovery. Our study provides the first evidence that PDE4 blockade controls NETosis in vitro and in vivo, in CF-relevant models. Since selective PDE4 inhibitors have been recently approved for the treatment of COPD and psoriasis, our present results encourage clinical trials to test the efficacy of this class of drugs in CF.

3.
FASEB J ; 35(4): e21441, 2021 04.
Article in English | MEDLINE | ID: mdl-33749902

ABSTRACT

An excessive, non-resolving inflammatory response underlies severe COVID-19 that may have fatal outcomes. Therefore, the investigation of endogenous pathways leading to resolution of inflammation is of interest to uncover strategies for mitigating inflammation in people with SARS-CoV-2 infection. This becomes particularly urgent in individuals with preexisting pathologies characterized by chronic respiratory inflammation and prone to bacterial infection, such as cystic fibrosis (CF). Here, we analyzed the immune responses to SARS-CoV-2 virion spike 1 glycoprotein (S1) of macrophages (MΦ) from volunteers with and without CF and tested the efficacy of resolvins (Rv) D1 and D2 in regulating the inflammatory and antimicrobial functions of MΦ exposed to S1. S1 significantly increased chemokine release, including interleukin (IL)-8, in CF and non-CF MΦ, while it enhanced IL-6 and tumor necrosis factor (TNF)-α in non-CF MΦ, but not in CF cells. S1 also triggered the biosynthesis of RvD1 and modulated microRNAs miR-16, miR-29a, and miR-103, known to control the inflammatory responses. RvD1 and RvD2 treatment abated S1-induced inflammatory responses in CF and non-CF MΦ, significantly reducing the release of select chemokines and cytokines including IL-8 and TNF-α. RvD1 and RvD2 both restored the expression of miR-16 and miR-29a, while selectively increasing miR-223 and miR-125a, which are involved in NF-κB activation and MΦ inflammatory polarization. During Pseudomonas aeruginosa infection, S1 stimulated the MΦ phagocytic activity that was further enhanced by RvD1 and RvD2. These results provide a map of molecular responses to SARS-CoV-2 in MΦ, key determinants of COVID-19-related inflammation, unveiling some peculiarity in the response of cells from individuals with CF. They also demonstrate beneficial, regulatory actions of RvD1 and RvD2 on SARS-CoV-2-induced inflammation.


Subject(s)
COVID-19 , Cystic Fibrosis , Docosahexaenoic Acids/pharmacology , Macrophages , Pseudomonas Infections , Pseudomonas aeruginosa/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/immunology , COVID-19/microbiology , COVID-19/pathology , Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Cystic Fibrosis/virology , Cytokines/immunology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Inflammation/virology , Macrophages/immunology , Macrophages/microbiology , Macrophages/pathology , Macrophages/virology , Male , MicroRNAs/immunology , Pseudomonas Infections/immunology , Pseudomonas Infections/pathology , Pseudomonas Infections/virology
4.
Br J Nutr ; 99(2): 240-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17845735

ABSTRACT

Lower CVD incidence is reported in Asian populations consuming soya-containing food. As polymorphonuclear leukocytes (PMN) are involved in the risk of CVD, we investigated the modulatory effect of soya isoflavones on several PMN functions and their molecular mechanisms in vitro. PMN, isolated from blood from healthy subjects, were tested upon activation with 1 microm- n-formyl-methyl-leucyl-phenylalanine (fMLP) for superoxide anion production (ferric cytochrome c reduction) and released elastase (chromogenic test). PMN homotypic aggregates stimulated by fMLP or P-selectin in dynamic conditions were detected by optical microscopy. PMN, mixed with thrombin-activated, washed platelets, formed cell aggregates, measured by flow cytometry. Phosphorylation of Pyk2, a focal adhesion kinase, was studied by immunoprecipitation and immunoblotting with specific antibodies. Genistein, daidzein and equol inhibited superoxide anion production (IC50 0.25 (sem 0.1), 21.0 (sem 4.2) and 13.0 (sem 2.8) microm, respectively); the release of elastase was prevented by genistein (IC50 63 (sem 17) microm). PMN homotypic aggregates, stimulated by fMLP, were significantly reduced (24 (sem 12) and 51 (sem 14) % of control) by 100 microm genistein and equol. P-selectin-induced aggregates were reduced to 19 (sem 6), 44 (sem 10) and 28 (sem 9) % of control by 100 microm genistein, daidzein and equol, respectively. Genistein, daidzein and equol also significantly reduced mixed platelet-PMN aggregates (IC50 4.0 (sem 0.9), 57 (sem 6) and 66 (sem 23) microm, respectively). In PMN challenged by fMLP or P-selectin, activation of Pyk2 was prevented by isoflavones. The cardioprotective effect of soya-containing food might be linked to reduction of PMN activation and PMN-platelet interaction, novel targets for the biological effects of soya isoflavones.


Subject(s)
Glycine max/chemistry , Isoflavones/pharmacology , Neutrophils/drug effects , Cell Adhesion/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Equol , Focal Adhesion Kinase 2/metabolism , Genistein/pharmacology , Humans , Macrophage-1 Antigen/metabolism , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/physiology , P-Selectin/pharmacology , Pancreatic Elastase/metabolism , Phosphorylation , Platelet Adhesiveness/drug effects , Superoxides/metabolism
5.
Blood ; 109(6): 2461-9, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17095622

ABSTRACT

Polymorphonuclear leukocyte (PMN)-platelet interactions at sites of vascular damage contribute to local and systemic inflammation. We sought to determine the role of "outside-in" signaling by Src-family tyrosine kinases (SFKs) in the regulation of alphaMbeta2-integrin-dependent PMN recruitment by activated platelets under (patho)physiologic conditions. Activation-dependent epitopes in beta2 integrin were exposed at the contact sites between PMNs and platelets and were abolished by SFK inhibitors. PMNs from alphaMbeta2(-/-), hck(-/-)fgr(-/-), and hck(-/-)fgr(-/-)lyn(-/-) mice had an impaired capacity to adhere with activated platelets in suspension. Phosphorylation of Pyk2 accompanied PMN adhesion to platelets and was blocked by inhibition as well as by genetic deletion of alphaMbeta2 integrin and SFKs. A Pyk2 inhibitor reduced platelet-PMN adhesion, indicating that Pyk2 may be a downstream effector of SFKs. Analysis of PMN-platelet interactions under flow revealed that SFK signaling was required for alphaMbeta2-mediated shear-resistant adhesion of PMNs to adherent platelets, but was dispensable for P-selectin-PSGL-1-mediated recruitment and rolling. Finally, SFK activity was required to support PMN accumulation along adherent platelets at the site of vascular injury, in vivo. These results definitely establish a role for SFKs in PMN recruitment by activated platelets and suggest novel targets to disrupt the pathophysiologic consequences of platelet-leukocyte interactions in vascular disease.


Subject(s)
Blood Platelets/cytology , Blood Platelets/enzymology , Neutrophils/cytology , Neutrophils/enzymology , Platelet Activation , src-Family Kinases/metabolism , Animals , CD11b Antigen/metabolism , CD18 Antigens/metabolism , Cell Adhesion , Focal Adhesion Kinase 2/metabolism , Humans , Macrophage-1 Antigen/metabolism , Mice , Mice, Knockout , P-Selectin/metabolism , Phosphotyrosine/metabolism , src-Family Kinases/deficiency , src-Family Kinases/genetics
6.
Biochem J ; 396(1): 89-98, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16433632

ABSTRACT

In cell suspensions subjected to high-shear rotatory motion, human PMN (polymorphonuclear cells) adhered to E-selectin-expressing CHO (Chinese-hamster ovary) cells (CHO-E), and formed homotypic aggregates when challenged by E-selectin-IgG fusion protein, by a mechanism that involved beta2 integrins. Both heterotypic and homotypic PMN adhesion was accompanied by tyrosine phosphorylation of a 110 kDa protein (P110). This event was prevented by blocking anti-(beta2 integrin) antibodies and by inhibitors of Src-family kinases, suggesting that it was part of an 'outside-in' signalling that was initiated by integrin engagement. Interestingly, Src-family kinase inhibitors prevented beta2-integrin-mediated (i) homotypic PMN adhesion triggered by E-selectin-IgG, (ii) heterotypic CHO-E/PMN adhesion in mixed-cell suspensions, and (iii) firm adhesion of PMN to CHO-E monolayers under physiological flow. Similarly to PMN treated with Src-family kinase inhibitors, PMN from hck-/-fgr-/- and hck-/-fgr-/-lyn-/- mice showed significant impairment of beta2-integrin-mediated adhesion to CHO-E. Moreover, the expression of beta2 integrin activation epitopes at the sites of cell-cell contact in CHO-E/PMN conjugates was abolished by Src-family kinase inhibitors. One component of P110 was identified as the FAK (focal adhesion kinase) Pyk2 (proline-rich tyrosine kinase 2), which was phosphorylated in a beta2 integrin- and Src-family-kinase-dependent manner. Thus, Src-family kinases, and perhaps Pyk2, mediate a signal necessary for beta2 integrin function in PMN tethered by E-selectin.


Subject(s)
CD18 Antigens/physiology , Cell Adhesion/physiology , E-Selectin/physiology , Neutrophils/cytology , Signal Transduction/physiology , src-Family Kinases/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Egtazic Acid/pharmacology , Flow Cytometry , Focal Adhesion Kinase 2/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Processing, Post-Translational , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Recombinant Fusion Proteins/physiology , Rheology , Stress, Mechanical , Transfection , src-Family Kinases/antagonists & inhibitors
7.
Biochem J ; 380(Pt 1): 57-65, 2004 May 15.
Article in English | MEDLINE | ID: mdl-14969582

ABSTRACT

In human PMN (polymorphonuclear cells), challenged by P-selectin, the beta2-integrin Mac-1 (macrophage antigen-1) promoted the activation of the SRC (cellular homologue of Rous sarcoma virus oncogenic protein) family members HCK (haematopoietic cell kinase) and LYN (an SRC family protein tyrosine kinase) and phosphorylation of a P-110 (110 kDa protein). SRC kinase activity in turn was necessary for macrophage antigen-1-mediated adhesion [Piccardoni, Sideri, Manarini, Piccoli, Martelli, de Gaetano, Cerletti and Evangelista (2001) Blood 98, 108-116]. This suggested that an SRC-dependent outside-in signalling strengthens the beta2-integrin interaction with the ligand. To support this hypothesis further, in the present study, we used the monoclonal antibody KIM127 or manganese to lock beta2 integrins in a high-affinity state, and homotypic PMN adhesion was analysed to monitor beta2-integrin adhesive function. KIM127 or manganese induced PMN homotypic adhesion and P-110 phosphorylation. Both these processes were abolished by blocking antibodies against the common beta2 chain, by a combination of antibodies against alphaL and alphaM or by inhibitors of SRC activity. Confocal microscopy showed that activation epitopes were expressed by beta2 integrins co-localized with patches of F-actin at the adhesion sites. Blockade of SRC kinases or of actin polymerization prevented clustering of activated integrins as well as F-actin accumulation. FACS analysis showed that SRC inhibitors modified neither basal nor manganese-induced KIM127 binding. An SRC-dependent outside-in signalling initiated by beta2 integrins was also required for adhesion triggered by interleukin-8. These results confirm the hypothesis that an SRC-dependent outside-in signalling triggered by high affinity and ligand binding is necessary to stabilize beta2-integrin-mediated adhesion. Allowing clustering of activated integrins, SRC might link the high-affinity with the high-avidity state. Proline-rich tyrosine kinase-2 appears to be involved in this process.


Subject(s)
Lymphocyte Function-Associated Antigen-1/physiology , Macrophage-1 Antigen/physiology , Neutrophils/physiology , P-Selectin/physiology , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/physiology , Actins/physiology , Adult , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cells, Cultured/enzymology , Enzyme Activation , Enzyme Inhibitors/pharmacology , Flow Cytometry , Focal Adhesion Kinase 2 , Humans , Interleukin-8/pharmacology , Neutrophils/enzymology , Phosphorylation , Phosphotyrosine/physiology , Stress, Mechanical
8.
Clin Pharmacokinet ; 42(12): 1059-70, 2003.
Article in English | MEDLINE | ID: mdl-12959636

ABSTRACT

BACKGROUND: Meta-analyses of the prevention of major vascular events by aspirin suggest therapeutic equivalence of all dosages. However, the optimal dosage still remains problematic, and a recent trial found aspirin 160 mg/day to be more effective than 80 mg/day for secondary prevention of ischaemic stroke. OBJECTIVE: To evaluate two low dosages of aspirin in terms of pharmacokinetics and pharmacodynamics (inhibition of platelet thromboxane generation and urinary excretion of thromboxane and prostacyclin metabolites). DESIGN AND PARTICIPANTS: A randomised cross-over study was performed in 16 healthy volunteers (9 women and 7 men, 33.8 +/- 5.1 years old) given enteric-coated aspirin 80 or 160 mg/day for 7 days. METHODS: Plasma concentrations of salicylate and aspirin were measured by high-performance liquid chromatography (HPLC) after both the first and the last dose (days 1 and 7). The usual pharmacokinetic parameters were then derived. Serum thromboxane B2 (TxB2) was measured by radioimmunoassay. The urinary excretion of 11-dehydro-TxB2 and 2,3-dinor-6-keto-prostaglandin F1alpha were measured on 8-hour urine samples by immunoassay after extraction and HPLC separation, both before and after 7 days of drug administration. RESULTS: With the 160 mg dosage, but not with the 80 mg dosage, higher concentrations of aspirin were found at day 7 compared with day 1. For aspirin 80 mg/day, 24-hour area under the concentration-time curve (AUC24) was similar on days 1 and 7 (569 +/- 339 vs 605 +/- 377 microg. h/L), but increased from 904 +/- 356 microg. h/L on day 1 to 1355 +/- 883 microg. h/L on day 7 with the higher dosage. Similarly, the AUC24 for salicylate was similar on days 1 and 7 with the lower dosage, but significantly increased from day 1 to day 7 after the higher dosage. This paralleled inhibition of serum TxB2 levels (99% vs 95% average inhibition by 160 and 80 mg/day) and of urinary excretion of thromboxane metabolite (77% vs 61% average inhibition by 160 and 80 mg/day), without altering the excretion of prostacyclin metabolite. CONCLUSIONS: Inhibition of serum TxB2 generation and of thromboxane metabolite urinary excretion by the lower dosage of aspirin, although substantial, still appeared incomplete. The small but significant further increase of serum TxB2 inhibition by the higher dosage was accompanied by an even greater inhibition of urinary excretion. We suggest that in some instances this difference would translate into a greater clinical benefit with the higher aspirin dosage. Our findings may also contribute to better definition of the recent concept of 'aspirin resistance'.


Subject(s)
Aspirin/pharmacokinetics , Fibrinolytic Agents/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacokinetics , Adult , Area Under Curve , Aspirin/administration & dosage , Aspirin/blood , Blood Platelets/metabolism , Chromatography, High Pressure Liquid , Cross-Over Studies , Dose-Response Relationship, Drug , Epoprostenol/urine , Female , Fibrinolytic Agents/administration & dosage , Humans , Male , Platelet Aggregation Inhibitors/administration & dosage , Salicylates/blood , Tablets, Enteric-Coated , Thromboxane B2/biosynthesis , Treatment Outcome
9.
Eur J Pharmacol ; 453(1): 131-9, 2002 Oct 18.
Article in English | MEDLINE | ID: mdl-12393068

ABSTRACT

Polymorphonuclear leukocytes are strongly implicated in the pathogenesis of inflammatory disease. Polymorphonuclear leukocyte recruitment at sites of inflammation, mainly sustained by the beta2-integrins, is followed by the synthesis and release of inflammatory mediators, such as leukotrienes, proteolytic enzymes and reactive oxygen species. Functional and metabolic interactions between polymorphonuclear leukocytes and platelets can contribute to and exacerbate the process. The effects of the dual 5-lipoxygenase and cyclooxygenase inhibitor licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid) were studied on arachidonic acid transcellular metabolism occurring between polymorphonuclear leukocytes and platelets. The formation of leukotriene C(4), a leukotriene A(4)-derived metabolite, by mixed polymorphonuclear leukocyte/platelet suspensions stimulated with 10 microM A23187 was inhibited by licofelone with an IC(50) of 3.8 +/- 0.07 microM. The formation of 5,12-di-hydroxy-eicosatetraenoic acid (HETE) was abolished at concentrations > or = 10 microM. Licofelone also inhibited the generation of reactive oxygen species by polymorphonuclear leukocytes stimulated with 1 microM n-formyl-methionyl-leucyl-phenylalanine (fMLP), 10 nM complement fraction 5a (C5a) and 1 microM platelet activating factor (PAF) with IC(50)s of 24.4 +/- 0.6, 11.0 +/- 1.5 and 11.7 +/-1.2 microM; elastase release induced by the three agonists was inhibited with IC(50)s of 12.2 +/- 2.2, 23.5 +/- 8 and 2.6 +/- 1 microM, respectively. Homotypic polymorphonuclear leukocyte aggregation induced by fMLP, C5A and PAF was inhibited by licofelone with IC(50)s of 23.7 +/- 4.8, 15.6 +/- 3.4 and 15.4 +/- 4 microM, respectively. The present study extends the anti-lipoxygenase and anti-cyclooxygenase activities of licofelone to the production of arachidonic acid metabolites generated as a consequence of polymorphonuclear leukocyte-platelet transcellular metabolism and to polymorphonuclear leukocyte responses relevant to the pathogenesis of inflammation. The coexistence within the same molecule of a wide spectrum of anti-inflammatory properties is of interest.


Subject(s)
Acetates/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Down-Regulation/drug effects , Lipoxygenase Inhibitors/pharmacology , Neutrophils/drug effects , Platelet Aggregation Inhibitors/pharmacology , Pyrroles/pharmacology , Dose-Response Relationship, Drug , Down-Regulation/physiology , Humans , Lipoxygenase/metabolism , Neutrophils/enzymology , Platelet Function Tests , Prostaglandin-Endoperoxide Synthases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...