Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Neonatal Screen ; 9(3)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37754774

ABSTRACT

Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare fatal disorders of fatty acid ß-oxidation with no apparent genotype-phenotype correlation. The measurement of acylcarnitines by MS/MS is a current diagnostic workup in these disorders. Nevertheless, false-positive and false-negative results have been reported, highlighting a necessity for more sensitive and specific biomarkers. This study included 54 patients with LCHAD/MTP deficiency that has been confirmed by biochemical and molecular methods. The analysis of acylcarnitines in dried blood spots was performed using ESI-MS/MS. The established "HADHA ratio" = (C16OH + C18OH + C18:1OH)/C0 was significantly elevated in all 54 affected individuals in comparison to the control group. Apart from 54 LCHAD deficiency patients, the "HADHA ratio" was calculated in 19 patients with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. As VLCAD-deficient patients did not show increased "HADHA ratio", the results emphasized the high specificity of this new ratio. Therefore, the "HADHA ratio" was shown to be instrumental in improving the overall performance of MS/MS-based analysis of acylcarnitine levels in the diagnostics of LCHAD/MTP deficiencies. The ratio was demonstrated to increase the sensitivity and specificity of this method and reduce the chances of false-negative results.

2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675121

ABSTRACT

Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes-MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing.


Subject(s)
Aspartate-tRNA Ligase , Leigh Disease , Mitochondrial Diseases , Humans , Leigh Disease/diagnosis , Leigh Disease/genetics , Leigh Disease/pathology , Mitochondrial Diseases/genetics , Mutation , Phenotype , Russia , Mitochondrial Proteins/genetics , Membrane Transport Proteins/genetics , Proteins/genetics , Transcription Factors/genetics , Aspartate-tRNA Ligase/genetics
3.
Mol Genet Metab Rep ; 32: 100889, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35782291

ABSTRACT

Introduction: Pathogenic variants in the pyruvate carboxylase (PC) gene cause a wide spectrum of recessive phenotypes, ranging from the early-onset fatal encephalopathy to the adult-onset benign form. Results: Patient 1 is a 6 y.o. boy with ataxia, hypoglycemia and episodes of lactic acidosis. WGS revealed the novel heterozygous missense variant c.1372A > G (p.Asn458Asp) in the PC gene. Additional analysis revealed discordant reads mapped to chromosomes 11 and 1, so a reciprocal translocation disrupted the PC gene was suspected. The translocation was validated via FISH-analysis and Sanger sequencing of its boundaries.Patient 2 is a 13 y.o. girl with psychomotor delay, episodes of lactic acidosis and ketonuria. WES revealed the novel homozygous intronic variant c.1983-116C > T. The PC's mRNA analysis demonstrated the exonization of several intron 16 sequences and some residual amount of WT mRNA isoform.Two other patients had more severe course of the disease. Their genotype represents missense variants in compound heterozygous and homozygous state (c.1876C > T (p.Arg626Trp), c.2606G > C (p.Gly869Ala), c.2435C > A (p.Ala812Asp). Conclusion: In patients with metabolic crises, lactic acidosis and hypoglycemia analysis of PC gene is recommended. WGS with deep bioinformatic analysis should be taken into consideration when none or the only one pathogenic variant in the PC gene is found.

4.
Genes (Basel) ; 11(8)2020 07 25.
Article in English | MEDLINE | ID: mdl-32722525

ABSTRACT

Approximately 30% of individuals with autism spectrum disorder (ASD) experience developmental regression, the etiology of which remains largely unknown. We performed a complete literature search and identified 47 genes that had been implicated in such cases. We sequenced these genes in a preselected cohort of 134 individuals with regressive autism. In total, 16 variants in 12 genes with evidence supportive of pathogenicity were identified. They were classified as variants of uncertain significance based on ACMG standards and guidelines. Among these were recurring variants in GRIN2A and PLXNB2, variants in genes that were linked to syndromic forms of ASD (GRIN2A, MECP2, CDKL5, SCN1A,PCDH19, UBE3A, and SLC9A6), and variants in the form of oligogenic heterozygosity (EHMT1, SLC9A6, and MFSD8).


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Gene Expression Regulation , Genetic Markers , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing/methods , Mutation , Child , Child, Preschool , Cohort Studies , Disease Progression , Female , Humans , Infant , Male
5.
J Inherit Metab Dis ; 42(5): 918-933, 2019 09.
Article in English | MEDLINE | ID: mdl-31260105

ABSTRACT

Recently, the plasma cytokines FGF-21 and GDF-15 were described as cellular metabolic regulators. They share an endocrine function and are highly expressed in the liver under stress and during starvation. Several studies found that these markers have high sensitivity and specificity for the diagnosis of mitochondrial diseases, especially those with prominent muscular involvement. In our study, we aimed to determine whether these markers could help distinguish mitochondrial diseases from other groups of inherited diseases. We measured plasma FGF-21 and GDF-15 concentrations in 122 patients with genetically confirmed primary mitochondrial disease and 127 patients with non-mitochondrial inherited diseases. Although GDF-15 showed better analytical characteristics (sensitivity = 0.66, specificity = 0.64, area under the curve [AUC] = 0.88) compared to FGF-21 (sensitivity = 0.51, specificity = 0.76, AUC = 0.78) in the pediatric group of mitochondrial diseases, both markers were also elevated in a variety of non-mitochondrial diseases, especially those with liver involvement (Gaucher disease, galactosemia, glycogenosis types 1a, 1b, 9), organic acidurias and some leukodystrophies. Thus, the overall positive and negative predictive values were not acceptable for these measurements to be used as diagnostic tests for mitochondrial diseases (FGF-21 positive predictive value [PPV] = 34%, negative predictive value [NPV] = 73%; GDF-15 PPV = 47%, NPV = 28%). We suggest that FGF-21 and GDF-15 increase in patients with metabolic diseases with metabolic or oxidative stress and inflammation.


Subject(s)
Fibroblast Growth Factors/blood , Growth Differentiation Factor 15/blood , Metabolic Diseases/blood , Metabolic Diseases/diagnosis , Adolescent , Adult , Biomarkers/blood , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Mitochondrial Diseases/blood , Mitochondrial Diseases/diagnosis , Predictive Value of Tests , Young Adult
6.
Mitochondrion ; 47: 10-17, 2019 07.
Article in English | MEDLINE | ID: mdl-31009750

ABSTRACT

We present a 14-year-old girl with loss of motor functions, tetraplegia, epilepsy and nystagmus, caused by a novel heteroplasmic m.641A>T transition in an evolutionary conserved region of mitochondrial genome, affecting the aminoacyl stem of mitochondrial tRNA-Phe. In silico prediction, respirometry, Western blot and enzymatic analyses in skin fibroblasts support the pathogenicity of the m.641A>T substitution. This is the 18th MT-TF point mutation associated with a mitochondrial disorder. The onset and the severity of the disease, however, is unique in this case and broadens the clinical picture related to mutations of mitochondrial tRNA-Phe.


Subject(s)
Brain Diseases/genetics , Epilepsy/genetics , Genes, Mitochondrial , Genetic Diseases, Inborn/genetics , Point Mutation , RNA, Mitochondrial/genetics , RNA, Transfer, Phe/genetics , Adolescent , Female , Humans , Mitochondria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...