Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Evodevo ; 15(1): 5, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730509

ABSTRACT

Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.

2.
Dev Genes Evol ; 233(2): 107-121, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37495828

ABSTRACT

Spiders represent an evolutionary successful group of chelicerate arthropods. The body of spiders is subdivided into two regions (tagmata). The anterior tagma, the prosoma, bears the head appendages and four pairs of walking legs. The segments of the posterior tagma, the opisthosoma, either lost their appendages during the course of evolution or their appendages were substantially modified to fulfill new tasks such as reproduction, gas exchange, and silk production. Previous work has shown that the homeotic Hox genes are involved in shaping the posterior appendages of spiders. In this paper, we investigate the expression of the posterior Hox genes in a tarantula that possesses some key differences of posterior appendages compared to true spiders, such as the lack of the anterior pair of spinnerets and a second set of book lungs instead of trachea. Based on the observed differences in posterior Hox gene expression in true spiders and tarantulas, we argue that subtle changes in the Hox gene expression of the Hox genes abdA and AbdB are possibly responsible for at least some of the morphological differences seen in true spiders versus tarantulas.


Subject(s)
Arthropods , Spiders , Animals , Spiders/genetics , Spiders/anatomy & histology , Genes, Homeobox , Arthropods/genetics , Gene Expression Regulation, Developmental
3.
Dev Biol ; 494: 35-45, 2023 02.
Article in English | MEDLINE | ID: mdl-36470448

ABSTRACT

Cell migration is a fundamental component during the development of most multicellular organisms. In the early spider embryo, the collective migration of signalling cells, known as the cumulus, is required to set the dorsoventral body axis. Here, we show that FGF signalling plays an important role during cumulus migration in the spider Parasteatoda tepidariorum. Spider embryos with reduced FGF signalling show reduced or absent cumulus migration and display dorsoventral patterning defects. Our study reveals that the transcription factor Ets4 regulates the expression of several FGF signalling components in the cumulus. In conjunction with a previous study, we show that the expression of fgf8 in the germ-disc is regulated via the Hedgehog signalling pathway. We also demonstrate that FGF signalling influences the BMP signalling pathway activity in the region around cumulus cells. Finally, we show that FGFR signalling might also influence cumulus migration in basally branching spiders and we propose that fgf8 might act as a chemo-attractant to guide cumulus cells towards the future dorsal pole of the spider embryo.


Subject(s)
Spiders , Animals , Body Patterning/physiology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Spiders/metabolism , Transcription Factors/metabolism , Fibroblast Growth Factors
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210269, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36252223

ABSTRACT

The formation of extraembryonic membranes (EEMs) contributes to the proper development of many animals. In arthropods, the formation and function of EEMs have been studied best in insects. Regarding the development of extraembryonic tissue in chelicerates (spiders and relatives), most information is available for spiders (Araneae). Especially two populations of cells have been considered to represent EEMs in spiders. The first of these potential EEMs develops shortly after egg deposition, opposite to a radially symmetrical germ disc that forms in one hemisphere of the egg and encloses the yolk. The second tissue, which has been described as being extraembryonic is the so-called dorsal field, which is required to cover the dorsal part of the developing spider germ rudiment before proper dorsal closure. In this review, we summarize the current knowledge regarding the formation of potential extraembryonic structures in the Chelicerata. We describe the early embryogenesis of spiders and other chelicerates, with a special focus on the formation of the potential extraembryonic tissues. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Subject(s)
Arthropods , Spiders , Animals , Embryonic Development
5.
Dev Genes Evol ; 232(1): 27-37, 2022 02.
Article in English | MEDLINE | ID: mdl-35038005

ABSTRACT

In the arthropod model species Drosophila melanogaster, a dipteran fly, segmentation of the anterior-posterior body axis is under control of a hierarchic gene cascade. Segmental boundaries that form morphological grooves are established posteriorly within the segmental expression domain of the segment-polarity gene (SPG) engrailed (en). More important for the development of the fly, however, are the parasegmental boundaries that are established at the interface of en expressing cells and anteriorly adjacent wingless (wg) expressing cells. In Drosophila, both segmental and transient parasegmental grooves form. The latter are positioned anterior to the expression of en. Although the function of the SPGs in establishing and maintaining segmental and parasegmental boundaries is highly conserved among arthropods, parasegmental grooves have only been reported for Drosophila, and a spider (Cupiennius salei). Here, we present new data on en expression, and re-evaluate published data, from four distantly related spiders, including Cupiennius, and a distantly related chelicerate, the harvestman Phalangium opilio. Gene expression analysis of en genes in these animals does not corroborate the presence of parasegmental grooves. Consequently, our data question the general presence of parasegmental grooves in arthropods.


Subject(s)
Arthropods , Drosophila Proteins , Spiders , Animals , Arthropods/genetics , Arthropods/metabolism , Body Patterning/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Spiders/genetics , Spiders/metabolism
6.
Dev Biol ; 482: 124-134, 2022 02.
Article in English | MEDLINE | ID: mdl-34942194

ABSTRACT

Leg axis formation in Drosophila is organized by Wingless (Wg) and Decapentaplegic (Dpp) that control a number of downstream factors to pattern the dorsoventral (DV) and proximodistal (PD) axis. The T-box genes are important downstream factors mainly involved in dorsoventral leg axis formation. The ventral side is specified by H15 and midline, whereas optomotor-blind (omb) and Dorsocross (Doc1) are factors to specify dorsal cell fates. We show here that omb also organizes PD leg axis patterning in the beetle Tribolium castaneum. In the legs, Tc-omb is expressed along the dorsal side and represses ventral factors like wg and H15. Intriguingly, removing Tc-omb function leads to the activation of the Dpp pathway along the dorsal side of the legs, thus mimicking normal dpp expression in Drosophila. Dpp activity along the dorsal side leads to altered expression of proximal-distal patterning genes such as Distal-less (Dll) and dachshund (dac). Our results indicate a cell-autonomous activation of Dll and repression of dac by dpp. These findings are compatible with the cross-regulatory "cascade model" of proximal-distal leg imaginal disc patterning of Drosophila.


Subject(s)
Body Patterning/genetics , Extremities/embryology , Nerve Tissue Proteins/genetics , T-Box Domain Proteins/genetics , Tribolium/embryology , Animals , Tribolium/genetics
7.
Evodevo ; 12(1): 12, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34753512

ABSTRACT

The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.

8.
Elife ; 102021 03 30.
Article in English | MEDLINE | ID: mdl-33783353

ABSTRACT

Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus, an evolutionarily distant outgroup, Toll has, like in Drosophila, a direct patterning role for the ventral half of the embryo. In addition, Toll polarises BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila. Our data suggest two surprising hypotheses: (1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or (2) a Drosophila-like system arose early in insect evolution and was extensively altered in multiple independent lineages.


Subject(s)
Body Patterning/genetics , Drosophila melanogaster/embryology , Gene Regulatory Networks , Gryllidae/embryology , Insect Proteins/genetics , Toll-Like Receptors/genetics , Animals , Biological Evolution , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Embryo, Nonmammalian , Embryonic Development , Evolution, Molecular , Gryllidae/genetics , Insect Proteins/metabolism , Toll-Like Receptors/metabolism
10.
Dev Genes Evol ; 230(2): 75-94, 2020 03.
Article in English | MEDLINE | ID: mdl-32076811

ABSTRACT

Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.


Subject(s)
Blastoderm/embryology , Embryo, Nonmammalian/metabolism , Spiders/embryology , Transcriptome/genetics , Animals , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Movement , Cumulus Cells/metabolism , Cumulus Cells/physiology , Embryonic Development/genetics , Larva/cytology , Larva/growth & development , Larva/metabolism , Muscles/embryology , Muscles/metabolism , Phylogeny , Pigmentation , Signal Transduction/genetics , Spiders/genetics , Tissue Transplantation
11.
Genome Biol ; 21(1): 15, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31969194

ABSTRACT

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Subject(s)
Arthropods/genetics , Evolution, Molecular , Animals , Arthropods/classification , DNA Methylation , Genetic Speciation , Genetic Variation , Phylogeny
12.
Elife ; 82019 10 01.
Article in English | MEDLINE | ID: mdl-31573513

ABSTRACT

The Drosophila Fog pathway represents one of the best-understood signaling cascades controlling epithelial morphogenesis. During gastrulation, Fog induces apical cell constrictions that drive the invagination of mesoderm and posterior gut primordia. The cellular mechanisms underlying primordia internalization vary greatly among insects and recent work has suggested that Fog signaling is specific to the fast mode of gastrulation found in some flies. On the contrary, here we show in the beetle Tribolium, whose development is broadly representative for insects, that Fog has multiple morphogenetic functions. It modulates mesoderm internalization and controls a massive posterior infolding involved in gut and extraembryonic development. In addition, Fog signaling affects blastoderm cellularization, primordial germ cell positioning, and cuboidal-to-squamous cell shape transitions in the extraembryonic serosa. Comparative analyses with two other distantly related insect species reveals that Fog's role during cellularization is widely conserved and therefore might represent the ancestral function of the pathway.


Subject(s)
Epithelium/embryology , Epithelium/metabolism , Insect Proteins/metabolism , Signal Transduction , Tribolium/metabolism , Animals , Animals, Genetically Modified , Blastoderm/embryology , Blastoderm/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development , Endocytosis , Gene Expression Regulation, Developmental , Germ Cells/metabolism , Green Fluorescent Proteins/metabolism , Insect Proteins/genetics , Mesoderm/embryology , Mesoderm/metabolism , Morphogenesis , Phenotype , Tribolium/embryology
13.
Dev Genes Evol ; 227(6): 389-400, 2017 11.
Article in English | MEDLINE | ID: mdl-29116381

ABSTRACT

Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.


Subject(s)
Amphibian Proteins/metabolism , Spiders/growth & development , Spiders/metabolism , Transcription Factors/metabolism , Amphibian Proteins/genetics , Amphibian Proteins/isolation & purification , Animals , Embryo, Nonmammalian/metabolism , Gene Expression , Morphogenesis , RNA Interference , Transcription Factors/genetics , Transcription Factors/isolation & purification , Zinc Fingers
14.
BMC Biol ; 15(1): 62, 2017 07 31.
Article in English | MEDLINE | ID: mdl-28756775

ABSTRACT

BACKGROUND: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Subject(s)
Evolution, Molecular , Gene Duplication , Genome , Spiders/genetics , Animals , Female , Male , Synteny
15.
Elife ; 62017 08 29.
Article in English | MEDLINE | ID: mdl-28849761

ABSTRACT

Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.


Subject(s)
Arthropod Proteins/genetics , Body Patterning/genetics , Mesoderm/metabolism , Spiders/genetics , Transcription Factors/genetics , Transcriptome , Animals , Arthropod Proteins/metabolism , Cell Movement , Embryo, Nonmammalian , Embryonic Development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mesoderm/cytology , Mesoderm/growth & development , Spiders/cytology , Spiders/embryology , Spiders/metabolism , Transcription Factors/metabolism
16.
Genesis ; 55(5)2017 05.
Article in English | MEDLINE | ID: mdl-28432834

ABSTRACT

The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans.


Subject(s)
Gene Expression Regulation, Developmental , Intestines/embryology , Spiders/genetics , Animals , Female , Germ Layers/embryology , Germ Layers/metabolism , Intestinal Mucosa/metabolism , Male , Spiders/embryology , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Front Zool ; 13: 35, 2016.
Article in English | MEDLINE | ID: mdl-27525029

ABSTRACT

BACKGROUND: Determination of the embryonic body axes is a crucial developmental process in all animals. The establishment of the embryonic axes of spiders has been best studied in the common-house-spider Parasteatoda tepidariorum. Here, anteroposterior (AP) polarity arises during germ disc formation; the centre of the germ-disc marks the future posterior pole, and the rim of the disc the future anterior pole of the spider embryo. The centre of the germ disc is also needed for the formation of the cumulus, a group of migratory cells needed to establish dorsoventral (DV) polarity. Thus, both body axes depend on proper germ disc formation and patterning. However, these processes have not been fully analysed at the cellular and molecular level. RESULTS: Here I present new techniques to stain the cell membranes/outlines in live and fixed spider embryos. I show that the germ-disc is formed from a regular and contiguous blastoderm and that co-ordinated cell shape changes, rather than migration of single cells, are required to drive germ-disc formation in P. tepidariorum embryos. Furthermore, I show that the rate of cell divisions within the embryonic and extra-embryonic region is not involved in the rapid establishment of the germ-disc. Finally, I show that the process of germ-disc formation is dependent on the initiation of zygotic transcription. CONCLUSIONS: The presented data provide new insights in to the formation of the germ-disc in spider embryos. The establishment of the germ-disc in Parasteatoda embryos is a highly dynamic process that involves wide scale cell-shape changes. While most of the blastodermal cells become cuboidal to form the dense germ-disc, the remaining blastodermal cells stay squamous and develop into huge extra-embryonic, yolk rich cells. In addition, this study shows that the onset of zygotic transcription is needed to establish the germ-disc itself, and that the mid-blastula transition of Parasteatoda tepidariorum embryos is prior to any overt axis establishment.

18.
Curr Biol ; 26(12): 1609-1615, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27212406

ABSTRACT

One of the key morphogenetic processes used during development is the controlled intercalation of cells between their neighbors. This process has been co-opted into a range of developmental events, and it also underlies an event that occurs in each major group of bilaterians: elongation of the embryo along the anterior-posterior axis [1]. In Drosophila, a novel component of this process was recently discovered by Paré et al., who showed that three Toll genes function together to drive cell intercalation during germband extension [2]. This finding raises the question of whether this role of Toll genes is an evolutionary novelty of flies or a general mechanism of embryonic morphogenesis. Here we show that the Toll gene function in axis elongation is, in fact, widely conserved among arthropods. First, we functionally demonstrate that two Toll genes are required for cell intercalation in the beetle Tribolium castaneum. We then show that these genes belong to a previously undescribed Toll subfamily and that members of this subfamily exhibit striped expression (as seen in Tribolium and previously reported in Drosophila [3-5]) in embryos of six other arthropod species spanning the entire phylum. Last, we show that two of these Toll genes are required for normal morphogenesis during anterior-posterior embryo elongation in the spider Parasteatoda tepidariorum, a member of the most basally branching arthropod lineage. From our findings, we hypothesize that Toll genes had a morphogenetic function in embryo elongation in the last common ancestor of all arthropods, which existed over 550 million years ago.


Subject(s)
Insect Proteins/genetics , Morphogenesis , Spiders/genetics , Toll-Like Receptors/genetics , Tribolium/genetics , Amphipoda/embryology , Amphipoda/genetics , Animals , Drosophila , Spiders/embryology , Tribolium/embryology
19.
Mol Biol Evol ; 33(1): 109-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26443673

ABSTRACT

The acquisition of a novel function, or neofunctionalization, protects duplicated genes from redundancy and subsequent loss, and is a major force that drives adaptive evolution. Neofunctionalization has been inferred for many duplicated genes based on differences in regulation between the parental gene and its duplicate. However, only few studies actually link the new function of a duplicated gene to a novel morphological or physiological character of the organism. Here we show that the duplication of dachshund (dac) in arachnids (spiders and allies) is linked with the evolution of a novel leg segment, the patella. We have studied dac genes in two distantly related spider species, the entelegyne spider Parasteatoda tepidariorum and the haplogyne spider Pholcus phalangioides. Both species possess two paralogous dac genes that duplicated before the split between entelegyne and haplogyne spiders. In contrast to the evolutionarily highly conserved dac1, its duplicate dac2 is strongly expressed in the patella leg segment during embryogenesis in both species. Using parental RNA interference in P. tepidariorum we show that dac2 is required for the development of the patella segment. If dac2 function is impaired, then the patella is fused with the tibia into a single leg segment. Thus, removing the function of dac2 experimentally reverts P. tepidariorum leg morphology into a stage before the duplication of dac and the evolution of the patella segment. Our results indicate that the origin of the patella is the result of the duplication and subsequent neofunctionalization of dac in the arachnid lineage.


Subject(s)
Arachnida/growth & development , Arachnida/genetics , Arthropod Proteins/genetics , Gene Duplication/genetics , Nuclear Proteins/genetics , Amino Acid Sequence , Animal Structures/growth & development , Animals , Arthropod Proteins/metabolism , Embryo, Nonmammalian , Female , Molecular Sequence Data , Nuclear Proteins/metabolism , Phylogeny , Sequence Alignment
20.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26311666

ABSTRACT

The intercalary segment is a limbless version of the tritocerebral segment and is present in the head of all insects, whereas other extant arthropods have retained limbs on their tritocerebral segment (e.g. the pedipalp limbs in spiders). The evolutionary origin of limb loss on the intercalary segment has puzzled zoologists for over a century. Here we show that an intercalary segment-like phenotype can be created in spiders by interfering with the function of the Hox gene labial. This links the origin of the intercalary segment to a functional change in labial. We show that in the spider Parasteatoda tepidariorum the labial gene has two functions: one function in head tissue maintenance that is conserved between spiders and insects, and a second function in pedipalp limb promotion and specification, which is only present in spiders. These results imply that labial was originally crucial for limb formation on the tritocerebral segment, but that it has lost this particular subfunction in the insect ancestor, resulting in limb loss on the intercalary segment. Such loss of a subfunction is away to avoid adverse pleiotropic effects normally associated with mutations in developmental genes, and may thus be a common mechanism to accelerate regressive evolution.


Subject(s)
Biological Evolution , Extremities/embryology , Spiders/embryology , Spiders/genetics , Animals , Body Patterning , Embryo, Nonmammalian/anatomy & histology , Extremities/anatomy & histology , Gene Expression Regulation, Developmental , Genes, Homeobox , Head/anatomy & histology , Head/embryology , Phenotype , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...