Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 95(10): e10940, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37815302

ABSTRACT

Improper and insufficient treatment of infectious hospital wastewater could seriously endanger public health and the environment. Ferrate(VI), a strong oxidizing, disinfecting, and coagulating agent, has the potential as a green solution for decontamination of water and wastewater. In this paper, electrochemically prepared potassium ferrate (K2 FeO4 ) with high purity was successfully encapsulated and applied to the water contaminated by SARS-CoV-2. Natural zeolite was chosen as an appropriate ecological material for ferrate encapsulation. The stability of encapsulated ferrate (in tablet form) was monitored for an extended time period (290 days) and has significantly increased in contrast with free potassium ferrate by almost 30%. Subsequently, the K2 FeO4 encapsulated with zeolite in tablet form was applied to the water and municipal water samples containing the SARS-CoV-2 virus. The removal efficiency reached up to 98.5% and 86.7%, respectively, under natural conditions. Combination of environmentally friendly oxidizing agent and natural excellent adsorbent leads to the creation of very effective water treatment matter. These findings are essentially immediate and especially important for immediate water treatment in urgent situations such as natural disasters or military conflict. PRACTITIONER POINTS: Electrochemical preparation of oxidizing agent, K2 FeO4 , in high purity by own constructed electrolyzer. Encapsulation of ferrate(VI) to natural zeolite threefold improving the stability during 9 months. SARS-CoV-2 virus was successfully removed from various contaminated types of water. High degradation efficiency of virus fragments by Fe(VI) was achieved without additional water adjustment, in natural pH range.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Water Purification , Zeolites , Humans , Oxidants , SARS-CoV-2 , Wastewater , Water Pollutants, Chemical/analysis , COVID-19/prevention & control , Tablets , Oxidation-Reduction
2.
Pharmaceutics ; 13(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34834308

ABSTRACT

The aim of the work was to analyze the influence of process parameters of high shear granulation on the process yield and on the morphology of granules on the basis of dynamic image analysis. The amount of added granulation liquid had a significant effect on all monitored granulometric parameters and caused significant changes in the yield of the process. In regard of the shape, the most spherical granules with the smoothest surface were formed at a liquid to solid ratio of ≈1. The smallest granules were formed at an impeller speed of 700 rpm, but the granules formed at 500 rpm showed both the most desirable shape and the highest process yield. Variation in the shape factors relied not only on the process parameters, but also on the area equivalent diameter of the individual granules in the batch. A linear relationship was found between the amount of granulation liquid and the compressibility of the granules. Using response surface methodology, models for predicting the size of granules and process yield related to the amount of added liquid and the impeller speed were generated, on the basis of which the size of granules and yield can be determined with great accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...