Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Clin Nucl Med ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693648

ABSTRACT

PURPOSE: 18F-FDG PET captures the relationship between glucose metabolism and synaptic activity, allowing for modeling brain function through metabolic connectivity. We investigated tumor-induced modifications of brain metabolic connectivity. PATIENTS AND METHODS: Forty-three patients with left hemispheric tumors and 18F-FDG PET/MRI were retrospectively recruited. We included 37 healthy controls (HCs) from the database CERMEP-IDB-MRXFDG. We analyzed the whole brain and right versus left hemispheres connectivity in patients and HC, frontal versus temporal tumors, active tumors versus radiation necrosis, and patients with high Karnofsky performance score (KPS = 100) versus low KPS (KPS < 70). Results were compared with 2-sided t test (P < 0.05). RESULTS: Twenty high-grade glioma, 4 low-grade glioma, and 19 metastases were included. The patients' whole-brain network displayed lower connectivity metrics compared with HC (P < 0.001), except assortativity and betweenness centrality (P = 0.001). The patients' left hemispheres showed decreased similarity, and lower connectivity metrics compared with the right (P < 0.01), with the exception of betweenness centrality (P = 0.002). HC did not show significant hemispheric differences. Frontal tumors showed higher connectivity metrics (P < 0.001) than temporal tumors, but lower betweenness centrality (P = 4.5-7). Patients with high KPS showed higher distance local efficiency (P = 0.01), rich club coefficient (P = 0.0048), clustering coefficient (P = 0.00032), betweenness centrality (P = 0.008), and similarity (P = 0.0027) compared with low KPS. Patients with active tumor(s) (14/43) demonstrated significantly lower connectivity metrics compared with necroses. CONCLUSIONS: Tumors cause reorganization of metabolic brain networks, characterized by formation of new connections and decreased centrality. Patients with frontal tumors retained a more efficient, centralized, and segregated network than patients with temporal tumors. Stronger metabolic connectivity was associated with higher KPS.

2.
Article in English | MEDLINE | ID: mdl-38782589

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to determine the diagnostic value of fractional plasma volume derived from dynamic contrast-enhanced perfusion MR imaging versus ADC, obtained from DWI in differentiating between grade 2 (low-grade) and grade 3 (high-grade) intracranial ependymomas. MATERIALS AND METHODS: A hospital database was created for the period from January 2013 through June 2022, including patients with histologically-proved ependymoma diagnosis with available dynamic contrast-enhanced MR imaging. Both dynamic contrast-enhanced perfusion and DWI were performed on each patient using 1.5T and 3T scanners. Fractional plasma volume maps and ADC maps were calculated. ROIs were defined by a senior neuroradiologist manually by including the enhancing tumor on every section and conforming a VOI to obtain the maximum value of fractional plasma volume (Vpmax) and the minimum value of ADC (ADCmin). A Mann-Whitney U test at a significance level of corrected P = .01 was used to evaluate the differences. Additionally, receiver operating characteristic curve analysis was applied to assess the sensitivity and specificity of Vpmax and ADCmin values. RESULTS: A total of 20 patients with ependymomas (10 grade 2 tumors and 10 grade 3 tumors) were included. Vpmax values for grade 3 ependymomas were significantly higher (P < .002) than those for grade 2. ADCmin values were overall lower in high-grade lesions. However, no statistically significant differences were found (P = .12114). CONCLUSIONS: As a dynamic contrast-enhanced perfusion MR imaging metric, fractional plasma volume can be used as an indicator to differentiate grade 2 and grade 3 ependymomas. Dynamic contrast-enhanced perfusion MR imaging plays an important role with high diagnostic value in differentiating low- and high-grade ependymoma.

3.
Cancers (Basel) ; 16(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791921

ABSTRACT

Background and Purpose: Distinguishing treatment-induced imaging changes from progressive disease has important implications for avoiding inappropriate discontinuation of a treatment. Our goal in this study is to evaluate the utility of dynamic contrast-enhanced (DCE) perfusion MRI as a biomarker for the early detection of progression. We hypothesize that DCE-MRI may have the potential as an early predictor for the progression of disease in GBM patients when compared to the current standard of conventional MRI. Methods: We identified 26 patients from 2011 to 2023 with newly diagnosed primary glioblastoma by histopathology and gross or subtotal resection of the tumor. Then, we classified them into two groups: patients with progression of disease (POD) confirmed by pathology or change in chemotherapy and patients with stable disease without evidence of progression or need for therapy change. Finally, at least three DCE-MRI scans were performed prior to POD for the progression cohort, and three consecutive DCE-MRI scans were performed for those with stable disease. The volume of interest (VOI) was delineated by a neuroradiologist to measure the maximum values for Ktrans and plasma volume (Vp). A Friedman test was conducted to evaluate the statistical significance of the parameter changes between scans. Results: The mean interval between subsequent scans was 57.94 days, with POD-1 representing the first scan prior to POD and POD-3 representing the third scan. The normalized maximum Vp values for POD-3, POD-2, and POD-1 are 1.40, 1.86, and 3.24, respectively (FS = 18.00, p = 0.0001). It demonstrates that Vp max values are progressively increasing in the three scans prior to POD when measured by routine MRI scans. The normalized maximum Ktrans values for POD-1, POD-2, and POD-3 are 0.51, 0.09, and 0.51, respectively (FS = 1.13, p < 0.57). Conclusions: Our analysis of the longitudinal scans leading up to POD significantly correlated with increasing plasma volume (Vp). A longitudinal study for tumor perfusion change demonstrated that DCE perfusion could be utilized as an early predictor of tumor progression.

4.
Radiol Clin North Am ; 62(2): 287-302, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272621

ABSTRACT

Significant advancements in cancer treatment have led to improved survival rates for patients, particularly in the context of spinal metastases. However, early detection and monitoring of treatment response remain crucial for optimizing patient outcomes. Although conventional imaging methods such as bone scan, PET, MR imaging, and computed tomography are commonly used for diagnosing and monitoring treatment, they present challenges in differential diagnoses and treatment response monitoring. This review article provides a comprehensive overview of the principles, applications, and practical uses of dynamic contrast-enhanced MR imaging and diffusion-weighted imaging in the assessment and monitoring of marrow-replacing disorders of the spine.


Subject(s)
Bone Marrow , Spinal Neoplasms , Humans , Spine/pathology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Diagnosis, Differential , Perfusion
5.
AJNR Am J Neuroradiol ; 44(12): 1451-1457, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38049990

ABSTRACT

BACKGROUND AND PURPOSE: Current imaging techniques have difficulty differentiating treatment success and failure in spinal metastases undergoing radiation therapy. This study investigated the correlation between changes in dynamic contrast-enhanced MR imaging perfusion parameters and clinical outcomes following radiation therapy for spinal metastases. We hypothesized that perfusion parameters will outperform traditional size measurements in discriminating treatment success and failure. MATERIALS AND METHODS: This retrospective study included 49 patients (mean age, 63 [SD, 13] years; 29 men) with metastatic lesions treated with radiation therapy who underwent dynamic contrast-enhanced MR imaging. The median time between radiation therapy and follow-up dynamic contrast-enhanced MR imaging was 62 days. We divided patients into 2 groups: clinical success (n = 38) and failure (n = 11). Failure was defined as PET recurrence (n = 5), biopsy-proved (n = 1) recurrence, or an increase in tumor size (n = 7), while their absence defined clinical success. A Mann-Whitney U test was performed to assess differences between groups. RESULTS: The reduction in plasma volume was greater in the success group than in the failure group (-57.3% versus +88.2%, respectively; P < .001). When we assessed the success of treatment, the sensitivity of plasma volume was 91% (10 of 11; 95% CI, 82%-97%) and the specificity was 87% (33 of 38; 95% CI, 73%-94%). The sensitivity of size measurements was 82% (9 of 11; 95% CI, 67%-90%) and the specificity was 47% (18 of 38; 95% CI, 37%-67%). CONCLUSIONS: The specificity of plasma volume was higher than that of conventional size measurements, suggesting that dynamic contrast-enhanced MR imaging is a powerful tool to discriminate between treatment success and failure.


Subject(s)
Brain Neoplasms , Spinal Neoplasms , Male , Humans , Middle Aged , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/pathology , Retrospective Studies , Sensitivity and Specificity , Magnetic Resonance Imaging/methods , Perfusion Imaging , Contrast Media , Brain Neoplasms/pathology
6.
Radiology ; 308(3): e222028, 2023 09.
Article in English | MEDLINE | ID: mdl-37668519

ABSTRACT

Since its discovery in the early 1990s, functional MRI (fMRI) has been used to study human brain function. One well-established application of fMRI in the clinical setting is the neurosurgical planning of patients with brain tumors near eloquent cortical areas. Clinical fMRI aims to preoperatively identify eloquent cortices that serve essential functions in daily life, such as hand movement and language. The primary goal of neurosurgery is to maximize tumor resection while sparing eloquent cortices adjacent to the tumor. When a lesion presents in the vicinity of an eloquent cortex, surgeons may use fMRI to plan their best surgical approach by determining the proximity of the lesion to regions of activation, providing guidance for awake brain surgery and intraoperative brain mapping. The acquisition of fMRI requires patient preparation prior to imaging, determination of functional paradigms, monitoring of patient performance, and both processing and analysis of images. Interpretation of fMRI maps requires a strong understanding of functional neuroanatomy and familiarity with the technical limitations frequently present in brain tumor imaging, including neurovascular uncoupling, patient compliance, and data analysis. This review discusses clinical fMRI in neuro-oncology, relevant ongoing research topics, and prospective future developments in this exciting discipline.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Mapping , Hand , Language
7.
AJR Am J Roentgenol ; 221(6): 806-816, 2023 12.
Article in English | MEDLINE | ID: mdl-37377358

ABSTRACT

BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.


Subject(s)
Brain Neoplasms , Humans , Infant, Newborn , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Speech/physiology , Retrospective Studies , Wakefulness , Magnetic Resonance Imaging , Language , Brain Mapping/methods
8.
Neuroimaging Clin N Am ; 33(3): 477-486, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356863

ABSTRACT

Recent therapeutic advances have led to increased survival times for patients with metastatic disease. Key to survival is early diagnosis and subsequent treatment as well as early detection of treatment failure allowing for therapy modifications. Conventional MR imaging techniques of the spine can be at times suboptimal for identifying viable tumor, as structural changes and imaging characteristics may not differ pretreatment and posttreatment. Advanced imaging techniques such as DCE-MRI can allow earlier and more accurate noninvasive assessment of viable disease by characterizing physiologic changes and tumor microvasculature.


Subject(s)
Spinal Neoplasms , Vertebral Body , Humans , Vertebral Body/pathology , Follow-Up Studies , Contrast Media , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/therapy , Magnetic Resonance Imaging/methods , Perfusion
9.
Cancers (Basel) ; 15(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37190282

ABSTRACT

Dynamic contrast-enhanced MRI (DCE) is an emerging modality in the study of vertebral body malignancies. DCE-MRI analysis relies on a pharmacokinetic model, which assumes that contrast uptake is simultaneous in the feeding of arteries and tissues of interest. While true in the highly vascularized brain, the perfusion of the spine is delayed. This delay of contrast reaching vertebral body lesions can affect DCE-MRI analyses, leading to misdiagnosis for the presence of active malignancy in the bone marrow. To overcome the limitation of delayed contrast arrival to vertebral body lesions, we shifted the arterial input function (AIF) curve over a series of phases and recalculated the plasma volume values (Vp) for each phase shift. We hypothesized that shifting the AIF tracer curve would better reflect actual contrast perfusion, thereby improving the accuracy of Vp maps in metastases. We evaluated 18 biopsy-proven vertebral body metastases in which standard DCE-MRI analysis failed to demonstrate the expected increase in Vp. We manually delayed the AIF curve for multiple phases, defined as the scan-specific phase temporal resolution, and analyzed DCE-MRI parameters with the new AIF curves. All patients were found to require at least one phase-shift delay in the calculated AIF to better visualize metastatic spinal lesions and improve quantitation of Vp. Average normalized Vp values were 1.78 ± 1.88 for zero phase shifts (P0), 4.72 ± 4.31 for one phase shift (P1), and 5.59 ± 4.41 for two phase shifts (P2). Mann-Whitney U tests obtained p-values = 0.003 between P0 and P1, and 0.0004 between P0 and P2. This study demonstrates that image processing analysis for DCE-MRI in patients with spinal metastases requires a careful review of signal intensity curve, as well as a possible adjustment of the phase of aortic AIF to increase the accuracy of Vp.

10.
Neuroradiol J ; : 19714009231173105, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37118651

ABSTRACT

AIM: Because the tongue is a midline structure, studies on the neural correlates of lateralized tongue function are challenging and remain limited. Patients with tongue cancer who undergo unilateral partial glossectomy may be a unique cohort to study tongue-associated cortical activation, particularly regarding brain hemispheric lateralization. This longitudinal functional magnetic resonance imaging (fMRI) study investigated cortical activation changes for three tongue tasks before and after left-sided partial glossectomy in patients with squamous cell carcinoma of the tongue. METHODS: Seven patients with squamous cell carcinoma involving the left tongue who underwent fMRI before and 6 months after unilateral partial glossectomy were studied. Post-surgical changes in laterality index (LI) values for tongue-associated precentral and postcentral gyri fMRI activation were calculated for the dry swallow, tongue press, and saliva sucking tasks. Group analysis fMRI activation maps were generated for each of the three tasks. RESULTS: There were significant differences in changes in LI values post-surgery between the tongue press (p < 0.005; median: +0.24), saliva sucking (-0.10), and dry swallow tasks (-0.16). Decreased contralateral activation (change in LI ≥+0.20) was observed post-surgery during tongue press in six of seven patients, but only in two patients during saliva sucking and one patient during dry swallow (p < 0.05). There was also increased activation in the supplementary motor area following surgery. CONCLUSION: Post-surgical fMRI changes following left-sided partial glossectomy may suggest task-specific sensitivities to cortical activation changes following unilateral tongue deficits that may reflect the impacts of surgery and adaptive responses to tongue impairment.

11.
Eur Radiol ; 33(9): 6069-6078, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37074422

ABSTRACT

OBJECTIVES: Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness). METHODS: The study was retrospective cross-sectional. We included patients with left-hemispheric tumors (study group) and right-hemispheric tumors (controls). We calculated five fMRI laterality indexes (LI): hemispheric, temporal lobe, frontal lobe, Broca's area (BA), Wernicke's area (WA). We defined LI ≥ 0.2 as left-lateralized (LL) and LI < 0.2 as atypical lateralized (AL). Chi-square test (p < 0.05) was employed to identify the relationship between LI and tumor/patient variables in the study group. For those variables having significant results, confounding factors were evaluated in a multinomial logistic regression model. RESULTS: We included 405 patients (235 M, mean age: 51 years old) and 49 controls (36 M, mean age: 51 years old). Contralateral language reorganization was more common in patients than controls. The statistical analysis demonstrated significant association between BA LI and patient sex (p = 0.005); frontal LI, BA LI, and tumor location in BA (p < 0.001); hemispheric LI and fibroblast growth factor receptor (FGFR) mutation (p = 0.019); WA LI and O6-methylguanine-DNA methyltransferase promoter (MGMT) methylation in high-grade gliomas (p = 0.016). CONCLUSIONS: Tumor genetics, pathology, and location influence language laterality, possibly due to cortical plasticity. Increased fMRI activation in the right hemisphere was seen in patients with tumors in the frontal lobe, BA and WA, FGFR mutation, and MGMT promoter methylation. KEY POINTS: • Patients harboring left-hemispheric tumors present with contralateral translocation of language function. Influential variables for this phenomenon included frontal tumor location, BA location, WA location, sex, MGMT promoter methylation, and FGFR mutation. • Tumor location, grade, and genetics may influence language plasticity, thereby affecting both communication between eloquent areas and tumor growth dynamics. • In this retrospective cross-sectional study, we evaluated language reorganization in 405 brain tumor patients by studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Middle Aged , Cross-Sectional Studies , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Language , Brain Mapping/methods
12.
J Neuroimaging ; 33(4): 661-670, 2023.
Article in English | MEDLINE | ID: mdl-37032593

ABSTRACT

BACKGROUND AND PURPOSE: Resting-state functional magnetic resonance imaging (rsfMRI) has been proposed as an alternative to task-based fMRI including clinical situations such as preoperative brain tumor planning, due to advantages including ease of performance and time savings. However, one of its drawbacks is the limited ability to accurately lateralize language function. METHODS: Using the rsfMRI data of healthy controls, we carried out a power spectra analysis on three regions of interest (ROIs): Broca's area (BA) in the frontal cortex for language, hand motor (HM) area in the primary motor cortex, and the primary visual cortex (V1). Spike removal, motion correction, linear trend removal, and spatial smoothing were applied. Spontaneous low-frequency fluctuations (0.01-0.1 Hz) were filtered to enable functional integration. RESULTS: BA showed greater power on the left hemisphere relative to the right (p = .0055), while HM (p = .1563) and V1 (p = .4681) were not statistically significant. A novel index, termed the power laterality index (PLI), computed to estimate the degree of power lateralization for each brain region, revealed a statistically significant difference between BA and V1 (p < .00001), where V1 was used as a control since the primary visual cortex does not lateralize. Validation studies used to compare PLI to a laterality index computed using phonemic fluency, a task-based, language fMRI paradigm, demonstrated good correlation. CONCLUSIONS: The power spectra for BA revealed left language lateralization, which was not replicated in HM or V1. This work demonstrates the feasibility and validity of an ROI-based power spectra analysis on rsfMRI data for language lateralization.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Functional Laterality , Language , Broca Area
13.
Cancers (Basel) ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36765795

ABSTRACT

Language reorganization may represent an adaptive phenomenon to compensate tumor invasion of the dominant hemisphere. However, the functional changes over time underlying language plasticity remain unknown. We evaluated language function in patients with low-grade glioma (LGG), using task-based functional MRI (tb-fMRI), graph-theory and standardized language assessment. We hypothesized that functional networks obtained from tb-fMRI would show connectivity changes over time, with increased right-hemispheric participation. We recruited five right-handed patients (4M, mean age 47.6Y) with left-hemispheric LGG. Tb-fMRI and language assessment were conducted pre-operatively (pre-op), and post-operatively: post-op1 (4-8 months), post-op2 (10-14 months) and post-op3 (16-23 months). We computed the individual functional networks applying optimal percolation thresholding. Language dominance and hemispheric connectivity were quantified by laterality indices (LI) on fMRI maps and connectivity matrices. A fixed linear mixed model was used to assess the intra-patient correlation trend of LI values over time and their correlation with language performance. Individual networks showed increased inter-hemispheric and right-sided connectivity involving language areas homologues. Two patterns of language reorganization emerged: Three/five patients demonstrated a left-to-codominant shift from pre-op to post-op3 (type 1). Two/five patients started as atypical dominant at pre-op, and remained unchanged at post-op3 (type 2). LI obtained from tb-fMRI showed a significant left-to-right trend in all patients across timepoints. There were no significant changes in language performance over time. Type 1 language reorganization may be related to the treatment, while type 2 may be tumor-induced, since it was already present at pre-op. Increased inter-hemispheric and right-side connectivity may represent the initial step to develop functional plasticity.

14.
J Neurosurg ; 139(1): 29-37, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36433876

ABSTRACT

OBJECTIVE: The ability of functional MRI (fMRI) to localize patient-specific eloquent areas has proved worthwhile in efforts to maximize resection while minimizing risk of iatrogenic damage in patients with brain tumors. Although cortical reorganization has been described, the frequency of its occurrence and the factors that influence incidence are not well understood. The authors investigated changes in language laterality between 2 fMRI studies in patients with brain tumors to elucidate factors contributing to cortical reorganization. METHODS: The authors analyzed 33 patients with brain tumors involving eloquent language areas who underwent 2 separate presurgical, language task-based fMRI examinations (fMRI1 and fMRI2). Pathology consisted of low-grade glioma (LGG) in 15, and high-grade glioma (HGG) in 18. The mean time interval between scans was 35 ± 38 months (mean ± SD). Regions of interest were drawn for Broca's area (BA) and the contralateral BA homolog. The laterality index (LI) was calculated and categorized as follows: > 0.2, left dominance; 0.2 to -0.2, codominance; and < -0.2, right dominance. Translocation of language function was defined as a shift across one of these thresholds between the 2 scans. Comparisons between the 2 groups, translocation of language function (reorganized group) versus no translocation (constant group), were performed using the Mann-Whitney U-test. RESULTS: Nine (27%) of 33 patients demonstrated translocation of language function. Eight of 9 patients with translocation had tumor involvement of BA, compared to 5/24 patients without translocation (p < 0.0001). There was no difference in LI between the 2 groups at fMRI1. However, the reorganized group showed a decreased LI at fMRI2 compared to the constant group (-0.1 vs 0.53, p < 0.01). The reorganized cohort showed a significant difference between LI1 and LI2 (0.50 vs -0.1, p < 0.0001) whereas the constant cohort did not. A longer time interval was found in the reorganized group between fMRI1 and fMRI2 for patients with LGG (34 vs 107 months, p < 0.002). Additionally, the reorganized cohort had a greater proportion of local tumor invasion into eloquent areas at fMRI2 than the constant group. Aphasia was present following fMRI2 in 13/24 (54%) patients who did not exhibit translocation, compared to 2/9 (22%) patients who showed translocation. CONCLUSIONS: Translocation of language function in patients with brain tumor is associated with tumor involvement of BA, longer time intervals between scans, and is seen in both LGG and HGG. The reduced incidence of aphasia in the reorganized group raises the possibility that reorganization supports the conservation of language function. Therefore, longitudinal fMRI is useful because it may point to reorganization and could affect therapeutic planning for patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Mapping , Brain Neoplasms/pathology , Magnetic Resonance Imaging , Glioma/pathology , Functional Laterality , Language
15.
Cortex ; 157: 245-255, 2022 12.
Article in English | MEDLINE | ID: mdl-36356409

ABSTRACT

BACKGROUND: Language function may reorganize to overcome focal impairment; however, the relation between functional and structural changes in patients with brain tumors remains unclear. We investigated the cortical volume of atypical language dominant (AD) patients with left frontal-insular high-grade (HGG) and low-grade glioma (LGG). We hypothesized atypical language being associated with areas of increased cortical volume in the right hemisphere, including language areas homologues. METHODS: Patient were recruited following the criteria: left frontal-insular glioma; functional MRI and 3DT1-weighted images; no artifacts. We calculated an hemispheric language laterality index (LI), defined as: AD if LI < .2; left-dominant (LD) if LI ≥ .2. We measured cortical volume in three voxel-based morphometry (VBM) analyses: total AD vs. LD patients; AD vs. LD in HGG; AD vs. LD in LGG. We repeated the analysis in AD vs. LD healthy controls (HC). A minimum threshold of t > 2 and corrected p < .025 (Bonferroni) was employed. RESULTS: We recruited 119 patients (44LGG, 75HGG). Hemispheric LI demonstrated 64/119AD and 55/119LD patients. The first VBM analysis demonstrated significantly increased cortical volume in AD patients in the right inferior frontal gyrus (IFG), right superior temporal gyrus (STG), right insula, right fusiform gyrus (FG), right precentral gyrus, right temporal-parietal junction, right posterior cingulate cortex (PCC), right hippocampus, right- and left cerebellum. AD patients with HGG showed the same areas of significantly increased cortical volume. AD patients with LGG displayed significantly increased cortical volume in right IFG, right STG, right insula, right FG, right anterior cingulate cortex, right PCC, right dorsal-lateral prefrontal cortex. HC showed no significant results. CONCLUSION: Right-sided (atypical) language activations in patients with left-hemispheric gliomas are associated with areas of increased cortical volume. Additionally, default mode network nodes showed greater cortical volume in AD patients regardless of the tumor grade, supporting the idea of these cortices participating in the development of language plasticity.


Subject(s)
Brain Neoplasms , Glioma , Humans , Default Mode Network/pathology , Glioma/diagnostic imaging , Language , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Magnetic Resonance Imaging , Functional Laterality , Brain Mapping/methods
16.
Cancers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884387

ABSTRACT

Brain tumors lead to modifications of brain networks. Graph theory plays an important role in clarifying the principles of brain connectivity. Our objective was to investigate network modifications related to tumor grade and location using resting-state functional magnetic resonance imaging (fMRI) and graph theory. We retrospectively studied 30 low-grade (LGG), 30 high-grade (HGG) left-hemispheric glioma patients and 20 healthy controls (HC) with rs-fMRI. Tumor location was labeled as: frontal, temporal, parietal, insular or occipital. We collected patients' clinical data from records. We analyzed whole-brain and hemispheric networks in all patients and HC. Subsequently, we studied lobar networks in subgroups of patients divided by tumor location. Seven graph-theoretical metrics were calculated (FDR p < 0.05). Connectograms were computed for significant nodes. The two-tailed Student t-test or Mann−Whitney U-test (p < 0.05) were used to compare graph metrics and clinical data. The hemispheric network analysis showed increased ipsilateral connectivity for LGG (global efficiency p = 0.03) and decreased contralateral connectivity for HGG (degree/cost p = 0.028). Frontal and temporal tumors showed bilateral modifications; parietal and insular tumors showed only local effects. Temporal tumors led to a bilateral decrease in all graph metrics. Tumor grade and location influence the pattern of network reorganization. LGG may show more favorable network changes than HGG, reflecting fewer clinical deficits.

17.
Front Hum Neurosci ; 16: 747215, 2022.
Article in English | MEDLINE | ID: mdl-35250510

ABSTRACT

When the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity. Different lesions may induce different patterns of reorganization depending on pathologic features, location in the brain, and timing of onset. Neuroimaging provides insights into language plasticity due to its non-invasiveness, ability to image the whole brain, and large-scale implementation. This review provides an overview of language plasticity on MRI with insights for patient care. First, we describe the structural and functional language network as depicted by neuroimaging. Second, we explore language reorganization triggered by stroke, brain tumors, and epileptic lesions and analyze applications in clinical diagnosis and treatment planning. By comparing different focal lesions, we investigate determinants of language plasticity including lesion location and timing of onset, longitudinal evolution of reorganization, and the relationship between structural and functional changes.

18.
Brain Imaging Behav ; 16(1): 252-262, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34333725

ABSTRACT

Brain tumors can have far-reaching impacts on functional networks. Language processing is typically lateralized to the left hemisphere, but also involves the right hemisphere and cerebellum. This resting-state functional MRI study investigated the proximal and distal effects of left-hemispheric brain tumors on language network connectivity in the ipsilesional and contralesional hemispheres. Separate language resting-state networks were generated from seeding in ipsilesional (left) and contralesional (right) Broca's Area for 29 patients with left-hemispheric brain tumors and 13 controls. Inclusion criteria for all subjects included language left-dominance based on task-based functional MRI. Functional connectivity was analyzed in each network to the respective Wernicke's Area and contralateral cerebellum. Patients were assessed for language deficits prior to scanning. Compared to controls, patients exhibited decreased connectivity in the ipsilesional and contralesional hemispheres between the Broca's Area and Wernicke's Area homologs (mean connectivity for patients/controls: left 0.51/0.59, p < 0.002; right 0.52/0.59, p < 0.0002). No differences in mean connectivity to the contralateral cerebellum were observed between groups (p > 0.09). Crossed cerebro-cerebellar connectivity was correlated in controls (rho = 0.59, p < 0.05), patients without language deficits (rho = 0.74, p < 0.0002), and patients with high-grade gliomas (rho = 0.78, p < 0.0002), but not in patients with language deficits or low-grade gliomas (p > 0.l). These findings demonstrate that brain tumors impact the language network in the contralesional hemisphere and cerebellum, which may reflect neurological deficits and lesion-induced cortical reorganization.


Subject(s)
Brain Neoplasms , Language , Brain Mapping , Brain Neoplasms/diagnostic imaging , Cerebellum/diagnostic imaging , Humans , Magnetic Resonance Imaging
19.
Sci Rep ; 11(1): 10568, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34012006

ABSTRACT

Bilingualism requires control of multiple language systems, and may lead to architectural differences in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core may capture these differences, highlighting crucial network components based on resiliency. We investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual networks using connectivity metrics to provide a patient care benchmark. Sixteen right-handed subjects (mean age 42-years; nine males) without neurological history were included: eight native English-speaking monolinguals and eight native Spanish-speaking (L1) bilinguals with acquired English (L2). All subjects underwent fMRI with gold-standard clinical language tasks. Starting from active clusters on fMRI, we inferred the persistent functional network across subjects and ran centrality measures to characterize differences. Our results demonstrated a persistent network "core" consisting of Broca's area, the pre-supplementary motor area, and the premotor area. K-core analysis showed that Wernicke's area was engaged by the "core" with weaker connection in L2 than L1.


Subject(s)
Brain/physiology , Magnetic Resonance Imaging , Multilingualism , Adult , Brain/diagnostic imaging , Female , Healthy Volunteers , Humans , Male , Middle Aged
20.
J Neuroimaging ; 31(4): 784-795, 2021 07.
Article in English | MEDLINE | ID: mdl-33817896

ABSTRACT

BACKGROUND AND PURPOSE: Assessment of the essential white matter fibers of arcuate fasciculus and corticospinal tract (CST), required for preoperative planning in brain tumor patients, relies on the reliability of diffusion tensor imaging (DTI). The recent development of multiband DTI (mb-DTI) based on simultaneous multislice excitation could maintain the overall quality of tractography while not exceeding standard clinical care time. To address this potential, we performed quantitative analyses to evaluate tractography results of arcuate fasciculus and CST acquired by mb-DTI in brain tumor patients. METHODS: We retrospectively analyzed 44 patients with brain lesions who underwent presurgical single-shot DTI (s-DTI) and mb-DTI. We measured DTI parameters: fractional anisotropy (FA) and mean diffusivity (MD [mm2 s-1 ]) in whole brain and tumor regions; and the tractography parameters: fiber FA, MD (mm2 s-1 ), volume (mm3 ), and length (mm) in the whole brain, arcuate fasciculus, and CST. Additionally, three neuroradiologists performed a blinded visual assessment comparing s-DTI with mb-DTI. RESULTS: The mb-DTI showed higher mean FA and lower MD (r > .95, p < .002) in whole brain and tumor regions of interest; slightly higher fiber FA, volume, and length; and slightly lower fiber MD in whole brain, arcuate fasciculus, and CST than in s-DTI. These differences were significant for fiber FA in all tracts; length (mm) in arcuate fasciculus; and fiber MD (mm2 s-1 ) and volume (mm3 ) in all patients with tumor involved in the arcuate fasciculus, CST, and whole brain tracts (p = .001). Visual assessment demonstrated that both techniques produced visually similar tracts. CONCLUSIONS: This study demonstrated the clinical potential and significant advantages of preoperative mb-DTI in brain tumor patients.


Subject(s)
Brain Neoplasms , Diffusion Tensor Imaging , Brain Mapping , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Humans , Language , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...