Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 53(26): 6810-3, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24802161

ABSTRACT

Engineering enzymes capable of modes of activation unprecedented in nature will increase the range of industrially important molecules that can be synthesized through biocatalysis. However, low activity for a new function is often a limitation in adopting enzymes for preparative-scale synthesis, reaction with demanding substrates, or when a natural substrate is also present. By mutating the proximal ligand and other key active-site residues of the cytochrome P450 enzyme from Bacillus megaterium (P450-BM3), a highly active His-ligated variant of P450-BM3 that can be employed for the enantioselective synthesis of the levomilnacipran core was engineered. This enzyme, BM3-Hstar, catalyzes the cyclopropanation of N,N-diethyl-2-phenylacrylamide with an estimated initial rate of over 1000 turnovers per minute and can be used under aerobic conditions. Cyclopropanation activity is highly dependent on the electronic properties of the P450 proximal ligand, which can be used to tune this non-natural enzyme activity.


Subject(s)
Cyclopropanes/chemical synthesis , Cytochrome P-450 Enzyme System/metabolism , Histidine/metabolism , Bacillus megaterium/enzymology , Catalytic Domain , Cyclopropanes/chemistry , Cytochrome P-450 Enzyme System/genetics , Enzymes , Histidine/chemistry , Milnacipran , Mutagenesis, Site-Directed , Protein Engineering , Stereoisomerism
2.
Chem Sci ; 5(2): 598-601, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24490022

ABSTRACT

Expanding nature's catalytic repertoire to include reactions important in synthetic chemistry will open new opportunities for 'green' chemistry and biosynthesis. We demonstrate enzyme-catalyzed insertion of carbenoids into N-H bonds. This type of bond disconnection, which has no counterpart in nature, can be mediated by variants of the cytochrome P450 from Bacillus megaterium. The N-H insertion reaction takes place in water, provides the desired products in 26-83% yield, forms the single addition product exclusively, and does not require slow addition of the diazo component.

3.
Environ Sci Technol ; 47(16): 9225-32, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23875928

ABSTRACT

Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).


Subject(s)
Geologic Sediments/chemistry , Uranium Compounds/analysis , Uranium/analysis , Anion Exchange Resins/chemistry , Colorado , Groundwater , Industrial Waste/analysis , Oxidation-Reduction , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...