Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 34(18): 8324-8335, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36186667

ABSTRACT

Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobility organic semiconductors in n-type field-effect transistors and non-fullerene acceptors in organic photovoltaic blends. The encapsulating macrocycles shield the bithiophene units while leaving the naphthalene diimide units available for intermolecular interactions. With respect to PNDIT2, the encapsulated counterpart displays an increased backbone planarity. Molecular encapsulation prevents preaggregation of the polymer chains in common organic solvents, while it permits π-stacking in the solid state and promotes thin film crystallinity through an intermolecular-lock mechanism. Consequently, n-type semiconducting behavior is retained in field-effect transistors, although charge mobility is lower than in PNDIT2 due to the absence of the fibrillar microstructure that originates from preaggregation in solution. Hence, molecularly encapsulating conjugated polymers represent a promising chemical strategy to tune the molecular interaction in solution and the backbone conformation and to consequently control the nanomorphology of casted films without altering the electronic structure of the core polymer.

2.
Adv Mater ; 34(15): e2110468, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35178779

ABSTRACT

Solution-processed, large-area, and flexible electronics largely relies on the excellent electronic properties of sp2 -hybridized carbon molecules, either in the form of π-conjugated small molecules and polymers or graphene and carbon nanotubes. Carbon with sp-hybridization, the foundation of the elusive allotrope carbyne, offers vast opportunities for functionalized molecules in the form of linear carbon atomic wires (CAWs), with intriguing and even superior predicted electronic properties. While CAWs represent a vibrant field of research, to date, they have only been applied sparingly to molecular devices. The recent observation of the field-effect in microcrystalline cumulenes suggests their potential applications in solution-processed thin-film transistors but concerns surrounding the stability and electronic performance have precluded developments in this direction. In the present study, ideal field-effect characteristics are demonstrated for solution-processed thin films of tetraphenyl[3]cumulene, the shortest semiconducting CAW. Films are deposited through a scalable, large-area, meniscus-coating technique, providing transistors with hole mobilities in excess of 0.1 cm2  V-1  s-1 , as well as promising operational stability under dark conditions. These results offer a solid foundation for the exploitation of a vast class of molecular semiconductors for organic electronics based on sp-hybridized carbon systems and create a previously unexplored paradigm.

3.
Nanoscale ; 13(1): 233-241, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33331389

ABSTRACT

Hybrid quantum wells are electronic structures where charge carriers are confined along stacked inorganic planes, separated by insulating organic moieties. 2D quantum-confined hybrid materials are of great interest from a solid-state physics standpoint because of the rich many-body phenomena they host, their tunability and easy synthesis, allowing the creation of material libraries. In addition, from a technological point of view, 2D hybrids are promising candidates for efficient, tunable, low-cost materials impacting a broad range of optoelectronic devices. Different approaches and materials have, therefore, been investigated, with the notable example of 2D metal halide hybrid perovskites. Despite the remarkable properties of such materials, the presence of toxic elements like lead is not desirable in applications and their ionic lattices may represent a limiting factor for stability under operating conditions. Therefore, non-ionic 2D materials made with non-toxic elements are preferable. In order to expand the library of possible hybrid quantum well materials, herein, we consider an alternative platform based on non-toxic, self-assembled, metal-organic chalcogenides. While the optical properties have been recently explored and some unique excitonic characters highlighted, photo-generation of carriers and their transport in these lamellar inorganic/organic nanostructures and critical optoelectronic aspects remain totally unexplored. We hereby report the first investigation on the electrical properties of the air-stable [AgSePh]∞ 2D coordination polymer in the form of nanocrystal (NC) films readily synthesized in situ and at low temperature, compatible with flexible plastic substrates. The wavelength-dependent photo-response of the NC films suggests the possible use of this material as a near-UV photodetector. We therefore built a lateral photo-detector, achieving a sensitivity of 0.8 A W-1 at 370 nm, thanks to a photoconduction mechanism, and a cut-off frequency of ∼400 Hz, and validated its reliability as an air-stable UV detector on flexible substrates.

4.
J Phys Chem Lett ; 11(5): 1970-1974, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32067464

ABSTRACT

Carbyne and linear carbon structures based on sp-hybridization are attractive targets as the ultimate one-dimensional system (i.e., one-atom in diameter) featuring wide tunability of optical and electronic properties. Two possible structures exist for sp-carbon atomic wires: (a) the polyynes with alternated single-triple bonds and (b) the cumulenes with contiguous double bonds. Theoretical studies predict semiconducting behavior for polyynes, while cumulenes are expected to be metallic. Very limited experimental work, however, has been directed toward investigating the electronic properties of these structures, mostly at the single-molecule or monolayer level. However, sp-carbon atomic wires hold great potential for solution-processed thin-film electronics, an avenue not exploited to date. Herein, we report the first field-effect transistor (FET) fabricated employing cumulenic sp-carbon atomic wires as a semiconductor material. Our proof-of-concept FET device is easily fabricated by solution drop casting and paves the way for exploiting sp-carbon atomic wires as active electronic materials.

5.
Proc Natl Acad Sci U S A ; 116(25): 12193-12198, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31164423

ABSTRACT

Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions of attractive particles exhibit complex, anisotropic microstructures and flow instabilities that are poorly understood and plague industrial processes. One such phenomenon, the formation of log-rolling flocs, which is ubiquitously observed in suspensions of attractive particles that are sheared while confined between parallel plates, is an exemplar of this phenomenology. Combining experiments and discrete element simulations, we demonstrate that this shear-induced structuring is driven by hydrodynamic coupling between the flocs and the confining boundaries. Clusters of particles trigger the formation of viscous eddies that are spaced periodically and whose centers act as stable regions where particles aggregate to form flocs spanning the vorticity direction. Simulation results for the wavelength of the periodic pattern of stripes formed by the logs and for the log diameter are in quantitative agreement with experimental observations on both colloidal and noncolloidal suspensions. Numerical and experimental results are successfully combined by means of rescaling in terms of a Mason number that describes the strength of the shear flow relative to the rupture force between contacting particles in the flocs. The introduction of this dimensionless group leads to a universal stability diagram for the log-rolling structures and allows for application of shear-induced structuring as a tool for assembling and patterning suspensions of attractive particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...