Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 21: 101072, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38205162

ABSTRACT

Sweetpotato varieties vary greatly in perceived textures and sweetness. This study identified physicochemical factors that influence these attributes in cooked sweetpotatoes. Fifteen genotypes grown on three plots were baked and evaluated by a trained descriptive sensory analysis panel for sweetness and 13 texture attributes. Mechanical parameters were measured by texture profile analysis (TPA); and composition (starch, cell wall material, sugar contents), starch properties (thermal, granule type ratios, granule sizes), and amylase activities were characterized. TPA predicted fracturability and firmness well, whereas starch and sugar contents, B-type starch granule ratio, and amylase activities influenced prediction of mouthfeel textures. Sweetness perception was influenced by perceived particle size and sugar contents; and maltose generation during baking was highly correlated with raw sweetpotato starch content. These relationships between physicochemical sweetpotato properties and baked textures and sweetness could benefit breeders and processors in selecting biochemical traits that result in consumer preferred products.

2.
J Sci Food Agric ; 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37340988

ABSTRACT

BACKGROUND: Variability in sugar content between raw and cooked sweetpotato storage roots impact nutritional and dietary importance with implications for consumer preference. High-throughput phenotyping is required to breed varieties that satisfy consumer preferences. RESULTS: Near-infrared reflectance spectroscopy (NIRS) calibration curves were developed for analysing sugars in baked storage roots using 147 genotypes from a population segregating for sugar content and other traits. The NIRS prediction curves had high coefficients of determination in calibration (R2 c ) of 0.96 (glucose), 0.93 (fructose), 0.96 (sucrose), and 0.96 (maltose). The corresponding coefficients of determination for cross-validation (R2 cv ) were 0.92 (glucose), 0.89 (fructose), 0.96 (sucrose) and 0.93 (maltose) and were similar to the R2 c for all sugars measured. The ratios of the standard deviation of the reference set to the standard error of cross-validation were greater than three for all sugars. These results confirm the applicability of the NIRS curves in efficiently determining sugar content in baked sweetpotato storage roots. External validation was performed on an additional 70 genotypes. Coefficients of determination (r2 ) were 0.88 (glucose), 0.88 (fructose), 0.86 (sucrose) and 0.49 (maltose). The results were comparable to those found for the calibration and cross-validation in fructose, glucose, and sucrose, but were moderate for maltose due to the low variability of maltose content in the population. CONCLUSIONS: NIRS can be used for screening sugar content in baked sweetpotato storage roots in breeding programs and can be used to assist with the development of improved sweetpotato varieties that better meet consumer preferences. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Theor Appl Genet ; 134(7): 1945-1955, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33813604

ABSTRACT

KEY MESSAGE: Utilizing a high-density integrated genetic linkage map of hexaploid sweetpotato, we discovered a major dominant QTL for root-knot nematode (RKN) resistance and modeled its effects. This discovery is useful for development of a modern sweetpotato breeding program that utilizes marker-assisted selection and genomic selection approaches for faster genetic gain of RKN resistance. The root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] (RKN) causes significant storage root quality reduction and yields losses in cultivated sweetpotato [Ipomoea batatas (L.) Lam.]. In this study, resistance to RKN was examined in a mapping population consisting of 244 progenies derived from a cross (TB) between 'Tanzania,' a predominant African landrace cultivar with resistance to RKN, and 'Beauregard,' an RKN susceptible major cultivar in the USA. We performed quantitative trait loci (QTL) analysis using a random-effect QTL mapping model on the TB genetic map. An RKN bioassay incorporating potted cuttings of each genotype was conducted in the greenhouse and replicated five times over a period of 10 weeks. For each replication, each genotype was inoculated with ca. 20,000 RKN eggs, and root-knot galls were counted ~62 days after inoculation. Resistance to RKN in the progeny was highly skewed toward the resistant parent, exhibiting medium to high levels of resistance. We identified one major QTL on linkage group 7, dominant in nature, which explained 58.3% of the phenotypic variation in RKN counts. This work represents a significant step forward in our understanding of the genetic architecture of RKN resistance and sets the stage for future utilization of genomics-assisted breeding in sweetpotato breeding programs.


Subject(s)
Disease Resistance/genetics , Ipomoea batatas/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Tylenchoidea/pathogenicity , Animals , Chromosome Mapping , Genetic Linkage , Genotype , Ipomoea batatas/parasitology , Plant Diseases/parasitology , Polymorphism, Single Nucleotide
4.
Plant Dis ; 105(4): 1101-1107, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32880532

ABSTRACT

Potential resistance to the guava root-knot nematode, Meloidogyne enterolobii, in 91 selected sweetpotato (Ipomoea batatas [L.] Lam.) genotypes was evaluated in six greenhouse experiments. Ten thousand eggs of M. enterolobii were inoculated on each sweetpotato genotype grown in a 3:1 sand to soil mixture. Sixty days after inoculation, the percentage of total roots with nematode-induced galls was determined, and nematode eggs were extracted from roots. Significant differences (P < 0.001) between sweetpotato genotypes were found in all six tests for gall rating, total eggs, and eggs per gram of root. Resistant sweetpotato genotypes were calculated as final eggs per root system divided by the initial inoculum, where Pf/Pi < 1 (reproduction factor; final egg count divided by initial inoculum of 10,000 eggs), and statistical mean separations were confirmed by Fisher's least significant difference t test. Our results indicated that 19 out of 91 tested sweetpotato genotypes were resistant to M. enterolobii. Some of the susceptible genotypes included 'Covington,' 'Beauregard,' 'NCDM04-001', and 'Hernandez.' Some of the resistant sweetpotato genotypes included 'Tanzania,' 'Murasaki-29,' 'Bwanjule,' 'Dimbuka-Bukulula,' 'Jewel,' and 'Centennial.' Most of the 19 resistant sweetpotato genotypes supported almost no M. enterolobii reproduction, with <20 eggs/g root of M. enterolobii. A number of segregants from a 'Tanzania' × 'Beauregard' cross demonstrated strong resistance to M. enterolobii observed in the 'Tanzania' parent. In collaboration with North Carolina State University sweetpotato breeding program, several genotypes evaluated in these tests are being used to incorporate the observed resistance to M. enterolobii into commercial sweetpotato cultivars.


Subject(s)
Ipomoea batatas , Tylenchoidea , Animals , Genotype , North Carolina , Plant Breeding , Tanzania , Tylenchoidea/genetics
5.
J Food Sci ; 83(1): 60-73, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29178339

ABSTRACT

Sweetpotato French fries (SPFF) are growing in popularity, however limited information is available on SPFF textural properties in relation to chemical composition. This study investigated the relationship between chemical components of different sweetpotato varieties and textural characteristics of SPFF. Sixteen sweetpotato genotypes were evaluated for (1) chemical constituents; (2) instrumental and sensory textural properties of SPFF; and (3) the relationship between chemical components, instrumental measurements, and sensory attributes. Dry matter (DM), alcohol-insoluble solids (AIS), starch, sugar, and oil content, and also α- and ß-amylase activities were quantified in raw sweetpotatoes and SPFF. Peak force and overall hardness describing instrumental textural properties of SPFF were measured using a texture analyzer. Descriptive sensory analysis was conducted and 10 attributes were evaluated by a trained panel. Results showed that DM, AIS, and starch content in raw sweetpotatoes were significantly correlated (P < 0.05) with instrumental peak force and overall hardness (r = 0.41 to 0.68), and with sensory surface roughness, hardness, fracturability, and crispness (r = 0.63 to 0.90). Total sugar content in raw sweetpotatoes was positively correlated with sensory smoothness and moistness (r = 0.77), and negatively correlated with instrumental peak force and overall hardness (r = -0.62 to -0.69). Instrumental measurements were positively correlated with sensory attributes of hardness, fracturability, and crispness (r = 0.68 to 0.96) and negatively correlated with oiliness, smoothness, moistness, and cohesiveness (r = -0.61 to -0.91). Therefore, DM, AIS, starch, and total sugar contents and instrumental measurements could be used as indicators to evaluate sweetpotato genotypes for SPFF processing. PRACTICAL APPLICATION: In recent years, sweetpotato French fries (SPFF) have grown in popularity, but limited information is available on SPFF textural properties in relation to the differences in chemical constituents among sweetpotato varieties. This study demonstrated that sensory texture attributes of SPFF varied widely and were significantly correlated with chemical components such as dry matter, starch, and total sugar contents of raw sweetpotatoes and instrumental texture measurements of SPFF. The knowledge generated from this study will benefit the food industry and breeding programs with the selection of sweetpotato varieties for improved SPFF quality.


Subject(s)
Food Handling/methods , Genotype , Ipomoea batatas/chemistry , Ipomoea batatas/genetics , Sensation , Amylases/metabolism , Dietary Carbohydrates/analysis , Hardness , Mechanical Phenomena , Plant Oils/analysis , Plant Tubers/chemistry , Plant Tubers/enzymology , Starch/analysis
6.
J Agric Food Chem ; 58(1): 404-10, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-20017481

ABSTRACT

Purple-fleshed sweetpotatoes (PFSP) can be a healthy food choice for consumers and a potential source for natural food colorants. This study aimed to identify anthocyanins and anthocyanidins in PFSP, and to evaluate the effect of thermal processing on these polyphenolic compounds. Freeze-dried powder of raw and steamed samples of three PFSP varieties were extracted with acidified methanol using a Dionex ASE 200 accelerated solvent extractor. Seventeen anthocyanins were identified by HPLC-DAD/ESI-MS/MS for Stokes Purple and NC 415 varieties with five major compounds: cyanidin 3-caffeoylsophoroside-5-glucoside, peonidin 3-caffeoylsophoroside-5-glucoside, cyanidin 3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, peonidin 3-caffeoyl-p-hydroxybenzoyl-sophoroside-5-glucoside, and peonidin-caffeoyl-feruloylsophoroside-5-glucoside. Okinawa variety showed 12 pigments with 3 major peaks identified as cyanidin 3-caffeoylsophoroside-5-glucoside, cyanidin 3-(6'',6'''-dicaffeoylsophoroside)-5-glucoside and cyanidin 3-(6''-caffeoyl-6'''-feruloylsophoroside)-5-glucoside. Steam cooking had no significant effect on total anthocyanin content or the anthocyanin pigments. Cyanidin and peonidin, which were the major anthocyanidins in the acid hydrolyzed extracts, were well separated and quantified by HPLC with external standards. Cyanidin and peonidin, which contribute to the blue and red hues of PFSP, can be simply quantified by HPLC after acid hydrolysis of the anthocyanins.


Subject(s)
Anthocyanins/chemistry , Chromatography, High Pressure Liquid/methods , Ipomoea batatas/chemistry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...