Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 88(10): 105001, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11909362

ABSTRACT

The onset of a neoclassical tearing mode (NTM) depends on the existence of a large enough seed island. It is shown in the Joint European Torus that NTMs can be readily destabilized by long-period sawteeth, such as obtained by sawtooth stabilization from ion-cyclotron heating or current drive. This has important implications for burning plasma scenarios, as alpha particles strongly stabilize the sawteeth. It is also shown that, by adding heating and current drive just outside the inversion radius, sawteeth are destabilized, resulting in shorter sawtooth periods and larger beta values being obtained without NTMs.

2.
Mol Cell Biol ; 14(9): 5961-74, 1994 Sep.
Article in English | MEDLINE | ID: mdl-8065329

ABSTRACT

The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs.


Subject(s)
Caenorhabditis elegans Proteins , Protein Serine-Threonine Kinases/genetics , Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Growth Factor/genetics , Receptors, Transforming Growth Factor beta , 3T3 Cells , Amino Acid Sequence , Animals , Base Sequence , Bone Morphogenetic Protein Receptors, Type I , Bone Morphogenetic Proteins , Cloning, Molecular , Gene Expression , Helminth Proteins/metabolism , Mice , Molecular Sequence Data , Oligonucleotide Probes/chemistry , RNA, Messenger/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Recombinant Proteins , Sequence Alignment , Sequence Homology, Amino Acid , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...