Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 74(10): 3188-3202, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36860200

ABSTRACT

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and, as such, is critical for adaptive responses to biotic stress, when the demand for de novo synthesis of immunity-related proteins and signalling components increases significantly. Successful phytopathogens have evolved an arsenal of small effector proteins which collectively reconfigure multiple host components and signalling pathways to promote virulence; a small, but important, subset of which are targeted to the endomembrane system including the ER. We identified and validated a conserved C-terminal tail-anchor motif in a set of pathogen effectors known to localize to the ER from the oomycetes Hyaloperonospora arabidopsidis and Plasmopara halstedii (downy mildew of Arabidopsis and sunflower, respectively) and used this protein topology to develop a bioinformatic pipeline to identify putative ER-localized effectors within the effectorome of the related oomycete, Phytophthora infestans, the causal agent of potato late blight. Many of the identified P. infestans tail-anchor effectors converged on ER-localized NAC transcription factors, indicating that this family is a critical host target for multiple pathogens.


Subject(s)
Oomycetes , Phytophthora infestans , Plants/metabolism , Transcription Factors/metabolism , Virulence , Endoplasmic Reticulum/metabolism , Plant Diseases
2.
Appl Environ Microbiol ; 89(1): e0163222, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36602304

ABSTRACT

Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is a major threat to vegetable crops in Madagascar. For more effective disease management, surveys were carried out in the main vegetable production areas of the country, leading to the collection of 401 new RSSC isolates. Phylogenetic assignment of the isolates revealed a high prevalence of phylotype I sequevar 18. This result contrasts sharply with the epidemiological pattern of RSSC in neighboring islands, including Reunion Island, Comoros, Mayotte, Mauritius, Rodrigues, and the Seychelles, where phylotype I sequevar 31 is widespread. Molecular typing characterization of the Malagasy isolates allowed the identification of 96 haplotypes. Some are found in various plots located in different provinces, which suggests that they were probably disseminated via infected plant material. To find out a potential explanation for the observed epidemiological pattern, we examined the capacity of the Malagasy strains to produce bacteriocin. Interestingly, the highly prevalent genetic lineages I-18 produce bacteriocins that are active against all the genetic lineages present in the country. This work sheds light on the potential impact of bacteriocins in the epidemiology of Malagasy RSSC. IMPORTANCE Knowledge of the epidemiology of a plant pathogen is essential to develop effective control strategies. This study focuses on the epidemiological pattern of Ralstonia pseudosolanacearum phylotype I populations responsible for bacterial wilt in Madagascar. We identified, with the newly collected isolates in three provinces, four genetic lineages probably propagated via infected plant material in Madagascar. We revealed that the epidemiological situation in Madagascar contrasts with that of neighboring Indian Ocean islands. Interestingly, our study on the bacteriocin-producing capacity of Malagasy isolates revealed a correlation between the inhibitory activity of the producing strains and the observed epidemiology. These results suggested that the epidemiology of plant pathogens may be impacted by bacteriocin production.


Subject(s)
Bacteriocins , Ralstonia solanacearum , Phylogeny , Madagascar/epidemiology , Bacteriocins/genetics , Prevalence
3.
Plant Physiol ; 189(3): 1587-1607, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35471237

ABSTRACT

Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.


Subject(s)
Medicago truncatula , Symbiosis , Ethylenes/metabolism , Gene Expression Regulation, Plant , Medicago truncatula/metabolism , Nitrogen/metabolism , Nitrogen Fixation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/microbiology , Symbiosis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Science ; 374(6567): 625-628, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34709882

ABSTRACT

Leghemoglobins enable the endosymbiotic fixation of molecular nitrogen (N2) in legume nodules by channeling O2 for bacterial respiration while maintaining a micro-oxic environment to protect O2-sensitive nitrogenase. We found that the NIN-like protein (NLP) transcription factors NLP2 and NIN directly activate the expression of leghemoglobins through a promoter motif, resembling a "double" version of the nitrate-responsive elements (NREs) targeted by other NLPs, that has conserved orientation and position across legumes. CRISPR knockout of the NRE-like element resulted in strongly decreased expression of the associated leghemoglobin. Our findings indicate that the origins of the NLP-leghemoglobin module for O2 buffering in nodules can be traced to an ancient pairing of NLPs with nonsymbiotic hemoglobins that function in hypoxia.


Subject(s)
Gene Expression Regulation, Plant , Leghemoglobin/genetics , Medicago truncatula/genetics , Root Nodules, Plant/metabolism , Transcription Factors/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Leghemoglobin/chemistry , Medicago truncatula/metabolism , Nitrogen Fixation , Oxygen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation , Promoter Regions, Genetic , Symbiosis , Transcription Factors/genetics
5.
PLoS One ; 15(12): e0242846, 2020.
Article in English | MEDLINE | ID: mdl-33290390

ABSTRACT

The Ralstonia solanacearum species complex (RSSC), composed of three species and four phylotypes, are globally distributed soil-borne bacteria with a very broad host range. In 2009, a devastating potato bacterial wilt outbreak was declared in the central highlands of Madagascar, which reduced the production of vegetable crops including potato, eggplant, tomato and pepper. A molecular epidemiology study of Malagasy RSSC strains carried out between 2013 and 2017 identified R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II). A previously published population biology analysis of phylotypes II and III using two MultiLocus Variable Number of Tandem Repeats Analysis (MLVA) schemes revealed an emergent epidemic phylotype II (sequevar 1) group and endemic phylotype III isolates. We developed an optimized MLVA scheme (RS1-MLVA14) to characterize phylotype I strains in Madagascar to understand their genetic diversity and structure. The collection included isolates from 16 fields of different Solanaceae species sampled in Analamanga and Itasy regions (highlands) in 2013 (123 strains) and in Atsinanana region (lowlands) in 2006 (25 strains). Thirty-one haplotypes were identified, two of them being particularly prevalent: MT007 (30.14%) and MT004 (16.44%) (sequevar 18). Genetic diversity analysis revealed a significant contrasting level of diversity according to elevation and sampling region. More diverse at low altitude than at high altitude, the Malagasy phylotype I isolates were structured in two clusters, probably resulting from different historical introductions. Interestingly, the most prevalent Malagasy phylotype I isolates were genetically distant from regional and worldwide isolates. In this work, we demonstrated that the RS1-MLVA14 scheme can resolve differences from regional to field scales and is thus suited for deciphering the epidemiology of phylotype I populations.


Subject(s)
Bacterial Typing Techniques , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Ralstonia/classification , Ralstonia/genetics , Tandem Repeat Sequences/genetics , Genotype
6.
J Microbiol Methods ; 178: 106054, 2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32926900

ABSTRACT

Long-read sequencing technologies are having a major impact on our approaches to studying non-model organisms and microbial communities. By significantly reducing the cost and facilitating the genome assembly pipelines, any laboratory can now develop its own genomics program regardless of the complexity of the genome studied. The most crucial current challenge is to develop efficient protocols for extracting genomic DNA (gDNA) with high quality and integrity adapted to the organism of interest. This can be particularly complex for obligate pathogens that must maintain intimate interactions inside infected host tissues. Here we propose a simple and cost-effective method for high molecular weight gDNA extraction from spores of Plasmopara halstedii, an obligate biotroph oomycete pathogen responsible for downy mildew in sunflower. We optimized the yield, the quality and the integrity of the extracted gDNA by fine-tuning three critical parameters, the grinding, the lysis temperature and the lysis duration. We obtained gDNA with a fragment size distribution reaching a peak ranging from 79 to 145 kb. More than half of the extracted gDNA consisted of DNA fragments larger than 42 kb, with 23% of fragments larger than 100 kb. We then demonstrated the relevance of this protocol for long-read sequencing using PacBio RSII technology. With this protocol, we were able to obtain a mean read length of 9.3 kb, a max read length of 71 kb and an N50 of 13.3 kb. The development of such DNA extraction protocols is an essential prerequisite for fully exploiting technologies requiring high molecular weight gDNA (e.g. long-read sequencing or optical mapping). These technological advances will help generate data to answer questions such as the role of newly duplicated gene clusters, repeated regions, genomic structural variations or to define number of chromosomes that still remains undefined in many species of pathogenic fungi and oomycetes.

7.
Plant J ; 97(4): 730-748, 2019 02.
Article in English | MEDLINE | ID: mdl-30422341

ABSTRACT

Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad-spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P. halstedii pathotypes of varying virulence, we selected 30 effectors that were expressed during plant infection as potentially essential genes to target broad-spectrum resistance in sunflower. The transient expression of the 30 core effectors in sunflower and in Nicotiana benthamiana leaves revealed a wide diversity of targeted subcellular compartments, including organelles not so far shown to be targeted by oomycete effectors such as chloroplasts and processing bodies. More than half of the 30 core effectors were able to suppress pattern-triggered immunity in N. benthamiana, and five of these induced hypersensitive responses (HR) in sunflower broad-spectrum resistant lines. HR triggered by PhRXLRC01 co-segregated with Pl22 resistance in F3 populations and both traits localized in 1.7 Mb on chromosome 13 of the sunflower genome. Pl22 resistance was physically mapped on the sunflower genome recently sequenced, unlike all the other downy mildew resistances published so far. PhRXLRC01 and Pl22 are proposed as an avirulence/resistance gene couple not previously described in sunflower. Core effector recognition is a successful strategy to accelerate broad-spectrum resistance gene identification in complex crop genomes such as sunflower.


Subject(s)
Helianthus/metabolism , Helianthus/microbiology , Oomycetes/pathogenicity , Plant Diseases/microbiology , Chromosome Mapping , Disease Resistance/genetics , Disease Resistance/physiology , Genotype , Virulence/genetics , Virulence/physiology
8.
Front Plant Sci ; 9: 1780, 2018.
Article in English | MEDLINE | ID: mdl-30564260

ABSTRACT

Resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.) is conferred by major resistance genes, denoted Pl. Twenty-two Pl genes have been identified and genetically mapped so far. However, over the past 50 years, wide-scale presence of only a few of them in sunflower crops led to the appearance of new, more virulent pathotypes (races) so it is important for sunflower varieties to carry as wide a range of resistance genes as possible. We analyzed phenotypically 12 novel resistant sources discovered in breeding pools derived from two wild Helianthus species and in eight wild H. annuus ecotypes. All were effective against at least 16 downy mildew pathotypes. We mapped their resistance genes on the sunflower reference genome of 3,600 Mb, in intervals that varied from 75 Kb to 32 Mb using an AXIOM® genotyping array of 49,449 SNP. Ten probably new genes were identified according to resistance spectrum, map position, hypersensitive response to the transient expression of a P. halstedii RXLR effector, or the ecotype/species from which they originated. The resistance source HAS6 was found to carry the first downy mildew resistance gene mapped on chromosome 11, whereas the other resistances were positioned on chromosomes 1, 2, 4, and 13 carrying already published Pl genes that we also mapped physically on the same reference genome. The new genes were designated Pl23-Pl32 according to the current nomenclature. However, since sunflower downy mildew resistance genes have not yet been sequenced, rules for designation are discussed. This is the first large scale physical mapping of both 10 new and 10 already reported downy mildew resistance genes in sunflower.

9.
Nat Plants ; 4(12): 1017-1025, 2018 12.
Article in English | MEDLINE | ID: mdl-30397259

ABSTRACT

Advances in deciphering the functional architecture of eukaryotic genomes have been facilitated by recent breakthroughs in sequencing technologies, enabling a more comprehensive representation of genes and repeat elements in genome sequence assemblies, as well as more sensitive and tissue-specific analyses of gene expression. Here we show that PacBio sequencing has led to a substantially improved genome assembly of Medicago truncatula A17, a legume model species notable for endosymbiosis studies1, and has enabled the identification of genome rearrangements between genotypes at a near-base-pair resolution. Annotation of the new M. truncatula genome sequence has allowed for a thorough analysis of transposable elements and their dynamics, as well as the identification of new players involved in symbiotic nodule development, in particular 1,037 upregulated long non-coding RNAs (lncRNAs). We have also discovered that a substantial proportion (~35% and 38%, respectively) of the genes upregulated in nodules or expressed in the nodule differentiation zone colocalize in genomic clusters (270 and 211, respectively), here termed symbiotic islands. These islands contain numerous expressed lncRNA genes and display differentially both DNA methylation and histone marks. Epigenetic regulations and lncRNAs are therefore attractive candidate elements for the orchestration of symbiotic gene expression in the M. truncatula genome.


Subject(s)
Epigenesis, Genetic , Genome, Plant/genetics , Medicago truncatula/genetics , RNA, Untranslated/genetics , Symbiosis/genetics , DNA Methylation , Gene Expression Regulation, Plant , Genomics , Multigene Family , Plant Proteins/genetics , RNA, Plant/genetics , Root Nodules, Plant/genetics
10.
Front Plant Sci ; 7: 1887, 2016.
Article in English | MEDLINE | ID: mdl-28066456

ABSTRACT

Plasmopara halstedii is an obligate biotrophic oomycete causing downy mildew disease on sunflower, Helianthus annuus, an economically important oil crop. Severe symptoms of the disease (e.g., plant dwarfism, leaf bleaching, sporulation and production of infertile flower) strongly impair seed yield. Pl resistance genes conferring resistance to specific P. halstedii pathotypes were located on sunflower genetic map but yet not cloned. They are present in cultivated lines to protect them against downy mildew disease. Among the 16 different P. halstedii pathotypes recorded in France, pathotype 710 is frequently found, and therefore continuously controlled in sunflower by different Pl genes. High-throughput sequencing of cDNA from P. halstedii led us to identify potential effectors with the characteristic RXLR or CRN motifs described in other oomycetes. Expression of six P. halstedii putative effectors, five RXLR and one CRN, was analyzed by qRT-PCR in pathogen spores and in the pathogen infecting sunflower leaves and selected for functional analyses. We developed a new method for transient expression in sunflower plant leaves and showed for the first time subcellular localization of P. halstedii effectors fused to a fluorescent protein in sunflower leaf cells. Overexpression of the CRN and of 3 RXLR effectors induced hypersensitive-like cell death reactions in some sunflower near-isogenic lines resistant to pathotype 710 and not in susceptible corresponding lines, suggesting they could be involved in Pl loci-mediated resistances.

11.
PLoS One ; 6(12): e28455, 2011.
Article in English | MEDLINE | ID: mdl-22194838

ABSTRACT

Cultivated for centuries, the varieties of rose have been selected based on a number of flower traits. Understanding the genetic and molecular basis that contributes to these traits will impact on future improvements for this economically important ornamental plant. In this study, we used scanning electron microscopy and sections of meristems and flowers to establish a precise morphological calendar from early rose flower development stages to senescing flowers. Global gene expression was investigated from floral meristem initiation up to flower senescence in three rose genotypes exhibiting contrasted floral traits including continuous versus once flowering and simple versus double flower architecture, using a newly developed Affymetrix microarray (Rosa1_Affyarray) tool containing sequences representing 4765 unigenes expressed during flower development. Data analyses permitted the identification of genes associated with floral transition, floral organs initiation up to flower senescence. Quantitative real time PCR analyses validated the mRNA accumulation changes observed in microarray hybridizations for a selection of 24 genes expressed at either high or low levels. Our data describe the early flower development stages in Rosa sp, the production of a rose microarray and demonstrate its usefulness and reliability to study gene expression during extensive development phases, from the vegetative meristem to the senescent flower.


Subject(s)
Flowers/growth & development , Flowers/genetics , Genes, Developmental/genetics , Genes, Plant/genetics , Genomics/methods , Rosa/growth & development , Rosa/genetics , Databases, Genetic , Expressed Sequence Tags , Flowers/ultrastructure , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Meristem/genetics , Meristem/growth & development , Meristem/ultrastructure , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Transcriptome/genetics
12.
J Exp Bot ; 62(10): 3587-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21398431

ABSTRACT

Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.


Subject(s)
Diploidy , Germ Cells, Plant/metabolism , Pollen/physiology , Polyploidy , Rosa/genetics , Rosa/physiology , Flowers/genetics , Flowers/physiology , Flowers/ultrastructure , Meiosis/genetics , Meiosis/physiology , Microscopy, Atomic Force , Pollen/genetics , Pollen/ultrastructure , Rosa/ultrastructure , Temperature
13.
PLoS One ; 4(8): e6757, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19710914

ABSTRACT

BACKGROUND: In eukaryotes, the spindle assembly checkpoint (SAC) ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the spindle. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the mechanism underlying this surveillance mechanism in plants, by characterising the orthogolous SAC proteins BUBR1, BUB3 and MAD2 from Arabidopsis. We showed that the cell cycle-regulated BUBR1, BUB3.1 and MAD2 proteins interacted physically with each other. Furthermore, BUBR1 and MAD2 interacted specifically at chromocenters. Following SAC activation by global defects in spindle assembly, these three interacting partners localised to unattached kinetochores. In addition, in cases of 'wait anaphase', plant SAC proteins were associated with both kinetochores and kinetochore microtubules. Unexpectedly, BUB3.1 was also found in the phragmoplast midline during the final step of cell division in plants. CONCLUSIONS/SIGNIFICANCE: We conclude that plant BUBR1, BUB3.1 and MAD2 proteins may have the SAC protein functions conserved from yeast to humans. The association of BUB3.1 with both unattached kinetochore and phragmoplast suggests that in plant, BUB3.1 may have other roles beyond the spindle assembly checkpoint itself. Finally, this study of the SAC dynamics pinpoints uncharacterised roles of this surveillance mechanism in plant cell division.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Cell Division , Spindle Apparatus , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Chromosomes, Plant , Cloning, Molecular , Promoter Regions, Genetic , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...