Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1154431, 2023.
Article in English | MEDLINE | ID: mdl-37152169

ABSTRACT

Polyamines (PAs) are ubiquitous low-molecular-weight aliphatic compounds present in all living organisms and essential for cell growth and differentiation. The developmentally regulated and stress-induced copper amine oxidases (CuAOs) oxidize PAs to aminoaldehydes producing hydrogen peroxide (H2O2) and ammonia. The Arabidopsis thaliana CuAOß (AtCuAOß) was previously reported to be involved in stomatal closure and early root protoxylem differentiation induced by the wound-signal MeJA via apoplastic H2O2 production, suggesting a role of this enzyme in water balance, by modulating xylem-dependent water supply and stomata-dependent water loss under stress conditions. Furthermore, AtCuAOß has been shown to mediate early differentiation of root protoxylem induced by leaf wounding, which suggests a whole-plant systemic coordination of water supply and loss through stress-induced stomatal responses and root protoxylem phenotypic plasticity. Among apoplastic ROS generators, the D isoform of the respiratory burst oxidase homolog (RBOH) has been shown to be involved in stress-mediated modulation of stomatal closure as well. In the present study, the specific role of AtCuAOß and RBOHD in local and systemic perception of leaf and root wounding that triggers stomatal closure was investigated at both injury and distal sites exploiting Atcuaoß and rbohd insertional mutants. Data evidenced that AtCuAOß-driven H2O2 production mediates both local and systemic leaf-to-leaf and root-to-leaf responses in relation to stomatal movement, Atcuaoß mutants being completely unresponsive to leaf or root wounding. Instead, RBOHD-driven ROS production contributes only to systemic leaf-to-leaf and root-to-leaf stomatal closure, with rbohd mutants showing partial unresponsiveness in distal, but not local, responses. Overall, data herein reported allow us to hypothesize that RBOHD may act downstream of and cooperate with AtCuAOß in inducing the oxidative burst that leads to systemic wound-triggered stomatal closure.

2.
Cells ; 10(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34943906

ABSTRACT

Plant defence responses to adverse environmental conditions include different stress signalling, allowing plant acclimation and survival. Among these responses one of the most common, immediate, and effective is the modulation of the stomatal aperture, which integrates different transduction pathways involving hydrogen peroxide (H2O2), calcium (Ca2+), nitric oxide (NO), phytohormones and other signalling components. The Arabidopsis thaliana copper amine oxidases ß (AtCuAOß) encodes an apoplastic CuAO expressed in guard cells and root protoxylem tissues which oxidizes polyamines to aminoaldehydes with the production of H2O2 and ammonia. Here, its role in stomatal closure, signalled by the wound-associated phytohormone methyl-jasmonate (MeJA) was explored by pharmacological and genetic approaches. Obtained data show that AtCuAOß tissue-specific expression is induced by MeJA, especially in stomata guard cells. Interestingly, two Atcuaoß T-DNA insertional mutants are unresponsive to this hormone, showing a compromised MeJA-mediated stomatal closure compared to the wild-type (WT) plants. Coherently, Atcuaoß mutants also show compromised H2O2-production in guard cells upon MeJA treatment. Furthermore, the H2O2 scavenger N,N1-dimethylthiourea (DMTU) and the CuAO-specific inhibitor 2-bromoethylamine (2-BrEtA) both reversed the MeJA-induced stomatal closure and the H2O2 production in WT plants. Our data suggest that AtCuAOß is involved in the H2O2 production implicated in MeJA-induced stomatal closure.


Subject(s)
Amine Oxidase (Copper-Containing)/genetics , Arabidopsis/genetics , Plant Growth Regulators/genetics , Plant Stomata/genetics , Abscisic Acid/metabolism , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Amine Oxidase (Copper-Containing)/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Cyclopentanes/metabolism , Ethylamines/pharmacology , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Nitric Oxide/genetics , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Stomata/growth & development , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Thiourea/analogs & derivatives , Thiourea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...