Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 71(19): 6116-6127, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32737981

ABSTRACT

Manganese (Mn) plays an important role in the oxygen-evolving complex, where energy from light absorption is used for water splitting. Although changes in light intensity and Mn status can interfere with the functionality of the photosynthetic apparatus, the interaction between these two factors and the underlying mechanisms remain largely unknown. Here, maize seedlings were grown hydroponically and exposed to two different light intensities under Mn-sufficient or -deficient conditions. No visual Mn deficiency symptoms appeared even though the foliar Mn concentration in the Mn-deficient treatments was reduced to 2 µg g-1. However, the maximum quantum yield efficiency of PSII and the net photosynthetic rate declined significantly, indicating latent Mn deficiency. The reduction in photosynthetic performance by Mn depletion was further aggravated when plants were exposed to high light intensity. Integrated transcriptomic and proteomic analyses showed that a considerable number of genes encoding proteins in the photosynthetic apparatus were only suppressed by a combination of Mn deficiency and high light, thus indicating interactions between changes in Mn nutritional status and light intensity. We conclude that high light intensity aggravates latent Mn deficiency in maize by interfering with the abundance of PSII proteins.


Subject(s)
Manganese , Zea mays , Light , Photosynthesis , Photosystem II Protein Complex/metabolism , Proteomics , Zea mays/genetics , Zea mays/metabolism
2.
New Phytol ; 217(4): 1640-1653, 2018 03.
Article in English | MEDLINE | ID: mdl-29206303

ABSTRACT

Transporters involved in manganese (Mn) uptake and intracellular Mn homeostasis in Arabidopsis and rice are well characterized, while much less is known for barley, which is particularly prone to Mn deficiency. In this study we have investigated the role of the iron-regulated transporter 1 (IRT1) for Mn uptake and translocation in barley plants. We employed an RNAi approach to reduce HvIRT1 expression to 5% of the wild-type level. This enabled characterization of the functional role of HvIRT1 by use of advanced imaging and phenotyping techniques applied to plants growing in hydroponics or soils with different Mn availability. Our results highlight the importance of HvIRT1 for the transport of Mn across the root endodermis into the stele. In the hvirt1-RNAi lines, a chlorotic phenotype with reduced shoot Mn concentration and impaired photosynthetic functionality was observed, especially under conditions with low Mn availability. We also document that HvIRT1 controlled the Mn distribution within the barley grain. Surprisingly, unlike other IRT1 orthologues, HvIRT1 played no significant role in iron uptake. We conclude that the barley IRT1 orthologue has a novel function with respect to ensuring sufficient shoot Mn concentrations. The preference of IRT1 for Mn instead of Fe is discussed in an evolutionary context.


Subject(s)
Hordeum/metabolism , Iron/metabolism , Manganese/metabolism , Plant Proteins/metabolism , Biological Transport , Gene Expression Regulation, Plant , Hordeum/genetics , Models, Biological , Phenotype , Plant Proteins/genetics , Plant Roots/metabolism , Plant Shoots/metabolism , RNA Interference , Seeds/metabolism , Xylem/metabolism
3.
Front Plant Sci ; 7: 1772, 2016.
Article in English | MEDLINE | ID: mdl-27933084

ABSTRACT

A catalytic manganese (Mn) cluster is required for the oxidation of water in the oxygen-evolving complex (OEC) of photosystem II (PSII) in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching (NPQ) and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce NPQ in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher NPQ than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency.

4.
New Phytol ; 211(4): 1255-65, 2016 09.
Article in English | MEDLINE | ID: mdl-27159614

ABSTRACT

Low concentration of zinc (Zn) in the endosperm of cereals is a major factor contributing to Zn deficiency in human populations. We have investigated how combined Zn and nitrogen (N) fertilization affects the speciation and localization of Zn in durum wheat (Triticum durum). Zn-binding proteins were analysed with liquid chromatography ICP-MS and Orbitrap MS(2) , respectively. Laser ablation ICP-MS with simultaneous Zn, sulphur (S) and phosphorus (P) detection was used for bioimaging of Zn and its potential ligands. Increasing the Zn and N supply had a major impact on the Zn concentration in the endosperm, reaching concentrations higher than current breeding targets. The S concentration also increased, but S was only partly co-localized with Zn. The mutual Zn and S enrichment was reflected in substantially more Zn bound to small cysteine-rich proteins (apparent size 10-30 kDa), whereas the response of larger proteins (apparent size > 50 kDa) was only modest. Most of the Zn-responsive proteins were associated with redox- and stress-related processes. This study offers a methodological platform to deepen the understanding of processes behind endosperm Zn enrichment. Novel information is provided on how the localization and speciation of Zn is modified during Zn biofortification of grains.


Subject(s)
Nutritional Status , Seeds/metabolism , Triticum/metabolism , Zinc/metabolism , Endosperm/metabolism , Mass Spectrometry , Nitrogen/metabolism , Organ Specificity , Plant Proteins/metabolism , Sulfur/metabolism
5.
Front Plant Sci ; 6: 550, 2015.
Article in English | MEDLINE | ID: mdl-26257757

ABSTRACT

The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

6.
Nat Commun ; 6: 7649, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26212235

ABSTRACT

Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control.


Subject(s)
Adenosine Triphosphatases/genetics , Arabidopsis Proteins/genetics , Arabidopsis , Meristem/metabolism , Phospholipid Transfer Proteins/genetics , Phospholipids/metabolism , Plant Stomata/metabolism , Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Microscopy, Fluorescence , Microsomes/metabolism , Organisms, Genetically Modified , Phospholipid Transfer Proteins/metabolism , Plant Leaves , Saccharomyces cerevisiae , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL
...