Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34494030

ABSTRACT

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

2.
MMWR Morb Mortal Wkly Rep ; 70(19): 719-724, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33988185

ABSTRACT

After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/therapy , Hospitalization/statistics & numerical data , Models, Statistical , Public Policy , Vaccination/statistics & numerical data , COVID-19/mortality , COVID-19/prevention & control , Forecasting , Humans , Masks , Physical Distancing , United States/epidemiology
3.
medRxiv ; 2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33758893

ABSTRACT

Timely, high-resolution forecasts of infectious disease incidence are useful for policy makers in deciding intervention measures and estimating healthcare resource burden. In this paper, we consider the task of forecasting COVID-19 confirmed cases at the county level for the United States. Although multiple methods have been explored for this task, their performance has varied across space and time due to noisy data and the inherent dynamic nature of the pandemic. We present a forecasting pipeline which incorporates probabilistic forecasts from multiple statistical, machine learning and mechanistic methods through a Bayesian ensembling scheme, and has been operational for nearly 6 months serving local, state and federal policymakers in the United States. While showing that the Bayesian ensemble is at least as good as the individual methods, we also show that each individual method contributes significantly for different spatial regions and time points. We compare our model's performance with other similar models being integrated into CDC-initiated COVID-19 Forecast Hub, and show better performance at longer forecast horizons. Finally, we also describe how such forecasts are used to increase lead time for training mechanistic scenario projections. Our work demonstrates that such a real-time high resolution forecasting pipeline can be developed by integrating multiple methods within a performance-based ensemble to support pandemic response. ACM REFERENCE FORMAT: Aniruddha Adiga, Lijing Wang, Benjamin Hurt, Akhil Peddireddy, Przemys-law Porebski,, Srinivasan Venkatramanan, Bryan Lewis, Madhav Marathe. 2021. All Models Are Useful: Bayesian Ensembling for Robust High Resolution COVID-19 Forecasting. In Proceedings of ACM Conference (Conference'17) . ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn.

4.
medRxiv ; 2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33140060

ABSTRACT

The COVID-19 pandemic brought to the forefront an unprecedented need for experts, as well as citizens, to visualize spatio-temporal disease surveillance data. Web application dashboards were quickly developed to fill this gap, including those built by JHU, WHO, and CDC, but all of these dashboards supported a particular niche view of the pandemic (ie, current status or specific regions). In this paper, we describe our work developing our own COVID-19 Surveillance Dashboard, available at https://nssac.bii.virginia.edu/covid-19/dashboard/, which offers a universal view of the pandemic while also allowing users to focus on the details that interest them. From the beginning, our goal was to provide a simple visual way to compare, organize, and track near-real-time surveillance data as the pandemic progresses. Our dashboard includes a number of advanced features for zooming, filtering, categorizing and visualizing multiple time series on a single canvas. In developing this dashboard, we have also identified 6 key metrics we call the 6Cs standard which we propose as a standard for the design and evaluation of real-time epidemic science dashboards. Our dashboard was one of the first released to the public, and remains one of the most visited and highly used. Our group uses it to support federal, state and local public health authorities, and it is used by people worldwide to track the pandemic evolution, build their own dashboards, and support their organizations as they plan their responses to the pandemic. We illustrate the utility of our dashboard by describing how it can be used to support data story-telling - an important emerging area in data science.

5.
medRxiv ; 2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32511466

ABSTRACT

Global airline networks play a key role in the global importation of emerging infectious diseases. Detailed information on air traffic between international airports has been demonstrated to be useful in retrospectively validating and prospectively predicting case emergence in other countries. In this paper, we use a well-established metric known as effective distance on the global air traffic data from IATA to quantify risk of emergence for different countries as a consequence of direct importation from China, and compare it against arrival times for the first 24 countries. Using this model trained on official first reports from WHO, we estimate time of arrival (ToA) for all other countries. We then incorporate data on airline suspensions to recompute the effective distance and assess the effect of such cancellations in delaying the estimated arrival time for all other countries. Finally we use the infectious disease vulnerability indices to explain some of the estimated reporting delays.

SELECTION OF CITATIONS
SEARCH DETAIL
...