Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 14: 1217425, 2023.
Article in English | MEDLINE | ID: mdl-37469777

ABSTRACT

Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper Scaphoideus titanus. European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts. In Slovenia, hazelnut orchards are declining due to 16SrV phytoplasma infections, where large populations of the non-autochthonous leafhopper Orientus ishidae have been observed. To better characterise the phytoplasma-induced decline of hazelnut and possible transmission fluxes between these orchards and grapevine, genetic diversity of 16SrV phytoplasmas in grapevine, hazelnut and leafhoppers was monitored from 2017 to 2022. The nucleotide sequence analysis was based on the map gene. The most prevalent map genotype in grapevine in all wine-growing regions of Slovenia was M54, which accounted for 84% of the 176 grapevines tested. Besides M54, other epidemic genotypes with lower frequency were M38 (6%), M51 (3%), M50 (2%) and M122 (1%). M38, M50 and M122 were also detected in infected cultivated hazelnuts and in specimens of O. ishidae leafhopper caught in declining hazelnut orchards. It suggests that this polyphagous vector could be responsible for phytoplasma infection in hazelnut orchards and possibly for some phytoplasma exchanges between hazelnuts and grapevine. We hereby describe new genotypes: M158 in grapevine as well as four never reported genotypes M159 to M162 in hazelnut. Of these four genotypes in hazelnut, one (M160) was also detected in O. ishidae. Analysis of additional genes of the new genotypes allowed us to assign them to the VmpA-III cluster, which corresponds to the 16SrV-C strains previously shown to be compatible with S. titanus transmission.

3.
ACS Chem Neurosci ; 12(15): 2865-2877, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34284583

ABSTRACT

Organophosphorus (OP) cholinesterase inhibitors, which include insecticides and chemical warfare nerve agents, are very potent neurotoxicants. Given that the actual treatment has several limitations, the present study provides a general method, called the zebrafish-OP-antidote test (ZOAT), and basic scientific data, to identify new antidotes that are more effective than the reference pyridinium oximes after acute OP poisoning. The reactivation capacity of a chemical compound can be measured using in vivo and ex vivo acetylcholinesterase (AChE) assays. We demonstrated that it is possible to differentiate between chemical compound protective efficacies in the central and peripheral nervous system via the visual motor response and electric field pulse motor response tests, respectively. Moreover, the ability to cross the brain-blood barrier can be estimated in a physiological context by combining an AChE assay on the head and trunk-tail fractions and the cellular and tissue localization of AChE activity in the whole-mount animal. ZOAT is an innovative method suitable for the screening and rapid identification of chemicals and mixtures used as antidote for OP poisoning. The method will make it easier to identify more effective medical countermeasures for chemical threat agents, including combinatorial therapies.


Subject(s)
Cholinesterase Reactivators , Organophosphate Poisoning , Acetylcholinesterase , Animals , Antidotes/pharmacology , Cholinesterase Inhibitors/pharmacology , Cholinesterase Reactivators/pharmacology , Larva , Organophosphate Poisoning/drug therapy , Oximes , Zebrafish
4.
ACS Appl Bio Mater ; 3(2): 815-822, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-35019285

ABSTRACT

This work presents a systematic study of the swelling behavior of a lecithin lamellar phase incorporating different amounts of the short peptide sequence diphenylalanine (FF). Small- and wide-angle X-ray scattering assays provide relevant information about the structure and elasticity of the lamellar stacking. These data show that important changes occur at the interface of the lipid membrane dependent not only on the peptide content but also on the hydration of the lamellar structure. Multilamellar-to-unilamellar transitions, previously observed for an increasing number of peptides, are now observed to be dependent on the hydration of the lamellar phase. Wide-angle X-ray scattering and electron microscopy observations (TEM) provide experimental evidence of peptide aggregation into long amylogenic fibers. We argue that aggregates that partition in water may become large enough to destabilize the lamellar structure. It is also shown that, for a given peptide concentration, the lamellar structure can be rendered more flexible or more rigid, by tuning the hydration.

SELECTION OF CITATIONS
SEARCH DETAIL
...