Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3747, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260627

ABSTRACT

Proteases play a major role in many vital physiological processes. Trypsin-like serine proteases (TLPs), in particular, are paramount in proteolytic cascade systems such as blood coagulation and complement activation. The structural topology of TLPs is highly conserved, with the trypsin fold comprising two ß-barrels connected by a number of variable surface-exposed loops that provide a surprising capacity for functional diversity and substrate specificity. To expand our understanding of the roles these loops play in substrate and co-factor interactions, we employ a systematic methodology akin to the natural truncations and insertions observed through evolution of TLPs. The approach explores a larger deletion space than classical random or directed mutagenesis. Using FVIIa as a model system, deletions of 1-7 amino acids through the surface exposed 170 loop, a vital allosteric regulator, was introduced. All variants were extensively evaluated by established functional assays and computational loop modelling with Rosetta. The approach revealed detailed structural and functional insights recapitulation and expanding on the main findings in relation to 170 loop functions elucidated over several decades using more cumbersome crystallization and single deletion/mutation methodologies. The larger deletion space was key in capturing the most active variant, which unexpectedly had a six-amino acid truncation. This variant would have remained undiscovered if only 2-3 deletions were considered, supporting the usefulness of the methodology in general protease engineering approaches. Our findings shed further light on the complex role that surface-exposed loops play in TLP function and supports the important role of loop length in the regulation and fine-tunning of enzymatic function throughout evolution.


Subject(s)
Factor VIIa , Serine Endopeptidases , Serine Endopeptidases/metabolism , Substrate Specificity , Trypsin/metabolism
2.
J Biol Chem ; 291(9): 4671-83, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26694616

ABSTRACT

The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic properties. Extensive studies have revealed two putative pathways for this allosteric communication. Here we provide further details of this allosteric communication by investigating FVIIa loop swap variants containing the 170 loop of trypsin that display TF-independent enhanced activity. Using x-ray crystallography, we show that the introduced 170 loop from trypsin directly interacts with the FVIIa active site, stabilizing segment 215-217 and activation loop 3, leading to enhanced activity. Molecular dynamics simulations and novel fluorescence quenching studies support that segment 215-217 conformation is pivotal to the enhanced activity of the FVIIa variants. We speculate that the allosteric regulation of FVIIa activity by TF binding follows a similar path in conjunction with protease domain N terminus insertion, suggesting a more complete molecular basis of TF-mediated allosteric enhancement of FVIIa activity.


Subject(s)
Factor VIIa/metabolism , Models, Molecular , Thromboplastin/metabolism , Trypsin/metabolism , Allosteric Regulation , Catalytic Domain , Crystallography, X-Ray , Enzyme Stability , Factor VIIa/chemistry , Factor VIIa/genetics , Humans , Kinetics , Molecular Dynamics Simulation , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Unfolding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility , Thromboplastin/chemistry , Thromboplastin/genetics , Trypsin/chemistry , Trypsin/genetics
3.
Blood ; 121(11): 2108-16, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23335368

ABSTRACT

Frequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain. Binding to von Willebrand factor (VWF) was maintained for all conjugates. Upon cleavage by thrombin, the B-domain and the associated PEG were released, generating activated FVIII (FVIIIa) with the same primary structure and specific activity as native FVIIIa. In both FVIII- and VWF-deficient mice, the half-life was found to increase with the size of PEG. In vivo potency and efficacy of FVIII conjugated with a 40-kDa PEG (N8-GP) and unmodified FVIII were not different. N8-GP had a longer duration of effect in FVIII-deficient mouse models, approximately a twofold prolonged half-life in mice, rabbits, and cynomolgus monkeys; however, the prolongation was less pronounced in rats. Binding capacity of N8-GP on human monocyte-derived dendritic cells was reduced compared with unmodified FVIII, resulting in several-fold reduced cellular uptake. In conclusion, N8-GP has the potential to offer efficacious prevention and treatment of bleeds in hemophilia A at reduced dosing frequency.


Subject(s)
Factor VIII/therapeutic use , Hemophilia A/drug therapy , Polyethylene Glycols/therapeutic use , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Disease Models, Animal , Factor VIII/administration & dosage , Factor VIII/metabolism , Female , Glycosylation , Hemophilia A/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/metabolism , Rabbits , Rats , Rats, Sprague-Dawley , Time Factors , Treatment Outcome
4.
Blood ; 118(8): 2333-41, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21700771

ABSTRACT

Current management of hemophilia B entails multiple weekly infusions of factor IX (FIX) to prevent bleeding episodes. In an attempt to make a longer acting recombinant FIX (rFIX), we have explored a new releasable protraction concept using the native N-glycans in the activation peptide as sites for attachment of polyethylene glycol (PEG). Release of the activation peptide by physiologic activators converted glycoPEGylated rFIX (N9-GP) to native rFIXa and proceeded with normal kinetics for FXIa, while the K(m) for activation by FVIIa-tissue factor (TF) was increased by 2-fold. Consistent with minimal perturbation of rFIX by the attached PEG, N9-GP retained 73%-100% specific activity in plasma and whole-blood-based assays and showed efficacy comparable with rFIX in stopping acute bleeds in hemophilia B mice. In animal models N9-GP exhibited up to 2-fold increased in vivo recovery and a markedly prolonged half-life in mini-pig (76 hours) and hemophilia B dog (113 hours) compared with rFIX (16 hours). The extended circulation time of N9-GP was reflected in prolonged correction of coagulation parameters in hemophilia B dog and duration of effect in hemophilia B mice. Collectively, these results suggest that N9-GP has the potential to offer efficacious prophylactic and acute treatment of hemophilia B patients at a reduced dosing frequency.


Subject(s)
Factor IX/chemistry , Factor IX/metabolism , Animals , Binding Sites , Disease Models, Animal , Dogs , Factor IX/genetics , Female , Half-Life , Hemophilia B/blood , Hemophilia B/drug therapy , Hemophilia B/genetics , Hemostatics/blood , Hemostatics/chemistry , Hemostatics/pharmacology , Humans , In Vitro Techniques , Kinetics , Male , Mice , Mice, Mutant Strains , Polyethylene Glycols/chemistry , Polysaccharides/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...