Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 552: 215982, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36309209

ABSTRACT

DNA methyltransferase (DNMT) inhibitors are used for treatment of certain hematological malignancies and exert anti-cancer activity through diverse mechanisms, including reexpression of tumor suppressor genes and anti-viral responses triggered by expression of endogenous retroviruses. Despite advances in the pharmacokinetic properties of DNMT inhibitors, the efficacy of these drugs in solid cancers remains low. Here, we show in cell lines and clinical and experimental tumors across multiple cancer types that DNMT inhibition induces the expression of interleukin-1 (IL-1), a cytokine with proinflammatory and protumorigenic properties. Specifically, this tumor-intrinsic IL-1 expression modulates the chemokine landscape of tumors and leads to the recruitment of monocytic myeloid-derived suppressor cells to the tumor microenvironment, processes that can be blocked by IL-1 antagonists. Molecular analysis demonstrates complex patterns of IL-1 and interferon activation and crosstalk in response to DNMT inhibition, which depend on the integrity of IRF- and NF-κB-mediated antiviral pathways and may determine the outcome of DNMT-inhibitor treatment. Together, our results show that DNMT inhibitors may negatively affect the microenvironment of a large subset of tumors and suggest that co-treatment with IL-1 antagonists may be a favorable combination for these patients.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Tumor Microenvironment , Interleukin-1 , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Modification Methylases , DNA , Cell Line, Tumor
2.
Front Oncol ; 12: 998000, 2022.
Article in English | MEDLINE | ID: mdl-36276095

ABSTRACT

Cancer/testis antigens are receiving attention as targets for cancer therapy due to their germ- and cancer cell-restricted expression. However, many of these antigens are inconsistently expressed among cancer types and individual tumors. Here, we show that members of the SSX cancer/testis antigen family comprise attractive targets in the majority of melanoma patients, as SSX is expressed in more than 90% of primary melanomas and metastases and plays a critical role in metastatic progression. Accordingly, SSX silencing in melanoma mouse xenograft models reduced tumor growth and completely abolished the formation of metastatic lesions in lungs and livers. Mechanistically, we demonstrate that silencing SSX in melanoma cells induces cell cycle S-phase stalling, leading to proliferative arrest and enhanced apoptosis, which elucidates the inhibitory effect of SSX loss on tumor growth and colonization capacity. Silencing SSX further compromised the capacity of melanoma cells to migrate and invade, influencing these cells' capability to spread and colonize. Taken together, these studies highlight SSX proteins as pivotal targets in melanoma with implications for blocking metastatic progression.

3.
Genes (Basel) ; 13(1)2022 01 12.
Article in English | MEDLINE | ID: mdl-35052473

ABSTRACT

The transcription factor ZBED1 is highly expressed in trophoblast cells, but its functions in the processes of trophoblast and placental biology remain elusive. Here, we characterized the role of ZBED1 in trophoblast cell differentiation using an in vitro BeWo cell model. We demonstrate that ZBED1 is enhanced in its expression early after forskolin-induced differentiation of BeWo cells and regulates many of the genes that are differentially expressed as an effect of forskolin treatment. Specifically, genes encoding markers for the differentiation of cytotrophoblast into syncytiotrophoblast and factors essential for trophoblast cell fusion and invasion were negatively regulated by ZBED1, indicating that ZBED1 might be important for maintaining a steady pool of cytotrophoblast cells. In addition, ZBED1 affected genes involved in the regulation of trophoblast cell survival and apoptosis, in agreement with the observed increase in apoptosis upon knockdown of ZBED1 in forskolin-treated BeWo cells. In addition, genes implicated in the differentiation, recruitment, and function of innate immune cells by the placenta were affected by ZBED1, further suggesting a role for this protein in the regulation of maternal immune tolerance. In conclusion, our study implicates ZBED1 in major biological processes of placental biology.


Subject(s)
Cell Fusion , Choriocarcinoma/pathology , Gene Expression Regulation , Placenta/pathology , Transcription Factors/metabolism , Trophoblasts/pathology , Uterine Neoplasms/pathology , Cell Differentiation , Choriocarcinoma/genetics , Choriocarcinoma/metabolism , Female , Humans , Placenta/metabolism , Pregnancy , Transcription Factors/genetics , Trophoblasts/metabolism , Tumor Cells, Cultured , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
4.
Cancers (Basel) ; 13(20)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34680349

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that exhibits a high proliferation rate and early metastasis leading to a poor prognosis. HMGA2 is a DNA binding transcriptional regulator implicated in tumorigenesis. Here, we demonstrate that the HMGA2 promoter is demethylated in TNBC tumors, leading to increased expression of HMGA2 at both mRNA and protein levels. Importantly, high HMGA2 levels in TNBC tumors are correlated with poor prognosis. To detail the role of HMGA2 in TNBC development and progression, we studied its effect on core cancer phenotypes. Stable knockdown of HMGA2 in TNBC cells revealed that HMGA2 may support cell proliferation, cell migration and invasion. In addition, HMGA2 knockdown decreased cancer stem cell (CSC) features. Importantly, we found that silencing HMGA2 inhibited NF-kB signaling and lead to decreased expression of the downstream molecules IL-6 and IL-8 and reduced STAT3 pathway activation. Our results demonstrate that HMGA2 supports cancer hallmarks in TNBC and may represent a promising target for TNBC treatment.

5.
Mol Cancer Res ; 16(3): 417-427, 2018 03.
Article in English | MEDLINE | ID: mdl-29330295

ABSTRACT

Repression of repetitive DNA is important for maintaining genomic stability, but is often perturbed in cancer. For instance, the megabase satellite domain at chromosome 1q12 is a common site of genetic rearrangements, such as translocations and deletions. Polycomb-group proteins can be observed as large subnuclear domains called polycomb bodies, the composition and cellular function of which has remained elusive. This study demonstrates that polycomb bodies are canonical subunits of the multiprotein polycomb repressive complex 1 deposited on 1q12 pericentromeric satellite DNA, which are normally maintained as constitutive heterochromatin by other mechanisms. Furthermore, the data reveal that polycomb bodies are exclusive to premalignant and malignant cells, being absent in normal cells. For instance, polycomb bodies are present in melanocytic cells of nevi and conserved in primary and metastatic melanomas. Deposition of polycomb on the 1q12 satellite DNA in melanoma development correlated with reduced DNA methylation levels. In agreement with this, inhibition of DNA methyltransferases, with the hypomethylating agent guadecitabine (SGI-110), was sufficient for polycomb body formation on pericentromeric satellites in primary melanocytes. This suggests that polycomb bodies form in cancer cells with global DNA demethylation to control the stability of pericentromeric satellite DNA. These results reveal a novel epigenetic perturbation specific to premalignant and malignant cells that may be used as an early diagnostic marker for detection of precancerous changes and a new therapeutic entry point.Implications: Pericentromeric satellite DNA is epigenetically reprogrammed into polycomb bodies as a premalignant event with implications for transcriptional activity and genomic stability. Mol Cancer Res; 16(3); 417-27. ©2018 AACR.


Subject(s)
DNA, Satellite/genetics , Neoplasms/genetics , Precancerous Conditions/genetics , Epigenesis, Genetic , Humans , Neoplasms/pathology , Precancerous Conditions/pathology , Transfection
6.
Nucleic Acids Res ; 42(18): 11433-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25249625

ABSTRACT

Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Polycomb-Group Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , Chromatin/metabolism , DNA/chemistry , DNA/metabolism , Enhancer of Zeste Homolog 2 Protein , Histones/metabolism , Humans , Melanoma/genetics , Melanoma/metabolism , Neoplasm Proteins/physiology , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/physiology , Spermatogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...