Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 408(3): 503-13, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21371477

ABSTRACT

Human transforming growth factor ß induced protein (TGFBIp) is composed of 683 residues, including an N-terminal cysteine-rich (EMI) domain, four homologous fasciclin domains, and an Arg-Gly-Asp (RGD) motif near the C-terminus. The protein is of interest because mutations in the TGFBI gene encoding TGFBIp lead to corneal dystrophy (CD), a condition where protein aggregates within the cornea compromise transparency. The complete three-dimensional structure of TGFBIp is not yet available, with the exception of a partial X-ray structure of the archetype FAS1 domain derived from Drosophila fasciclin-1. In this study, small-angle X-ray scattering (SAXS) models of intact wild-type (WT) human TGFBIp and a mutant (R124H) are presented. The mutation R124H leads to a variant of granular CD. The deduced structure of the TGFBIp monomer consists of four FAS1 domains in a simple "beads-on-a-string" arrangement, constructed by the superimposition of four consecutive Drosophila fasciclin domains. The SAXS-based model of the TGFBIp R124H mutant displayed no structural differences from WT. Both WT TGFBIp and the R124H mutant formed trimers at higher protein concentrations. The similar association properties and three-dimensional shape of the two proteins suggest that the mutation does not induce any major structural rearrangements, but points towards the role of other corneal-specific factors in the formation of corneal R124H deposits.


Subject(s)
Amino Acid Substitution/genetics , Extracellular Matrix Proteins/chemistry , Mutation, Missense , Protein Multimerization , Transforming Growth Factor beta/chemistry , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Humans , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Scattering, Small Angle , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
2.
Adv Colloid Interface Sci ; 155(1-2): 50-7, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20152957

ABSTRACT

Solution and adsorption properties of both charged and uncharged bottle-brush polymers have been investigated. The solution conformation and interactions in solution have been investigated by small-angle scattering techniques. The association of the bottle-brush polymers with anionic surfactants has also been studied. Surfactant binding isotherm measurements, NMR, surface tension measurements, as well as SAXS, SANS and light scattering techniques were utilized for understanding the association behaviour in bulk solutions. The adsorption of the bottle-brush polymers onto oppositely charged surfaces has been explored using a battery of techniques, including reflectometry, ellipsometry, quartz crystal microbalance, and neutron reflectivity. The combination of these techniques allowed determination of adsorbed mass, layer thickness, water content, and structural changes occurring during layer formation. The adsorption onto mica was found to be very different to that on silica, and an explanation for this was sought by employing a lattice mean-field theory. The model was able to reproduce a number of salient experimental features characterizing the adsorption of the bottle-brush polymers over a wide range of compositions, spanning from uncharged bottle-brushes to linear polyelectrolytes. This allowed us to shed light on the importance of electrostatic surface properties and non-electrostatic surface-polymer affinity for the adsorption. The interactions between bottle-brush polymers and anionic surfactants in adsorbed layers have also been elucidated using ellipsometry, neutron reflectivity and surface force measurements.

3.
Langmuir ; 23(13): 6896-902, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17523689

ABSTRACT

The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.


Subject(s)
Micelles , Neutrons , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Scattering, Small Angle , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...