Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(3): 635-647, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38227769

ABSTRACT

Enzymatic degradation of cellulosic biomass is a well-established route for the sustainable production of biofuels, chemicals, and materials. A strategy employed by nature and industry to achieve an efficient degradation of cellulose is that cellobiohydrolases (or exocellulases), such as Cel7A, work synergistically with endoglucanases, such as Cel7B, to achieve the complete degradation of cellulose. However, a complete mechanistic understanding of this exo-endo synergy is still lacking. Here, we used single-molecule fluorescence microscopy to quantify the binding kinetics of Cel7A on cellulose when it is acting alone on the cellulose fibrils and in the presence of its synergy partner, the endoglucanase Cel7B. To this end, we used a fluorescently tagged Cel7A and studied its binding in the presence of the unlabeled Cel7B. This provided the single-molecule data necessary for the estimation of the rate constants of association kON and dissociation kOFF of Cel7A for the substrate. We show that the presence of Cel7B does not impact the dissociation rate constant, kOFF. But, the association rate of Cel7A decreases by a factor of 2 when Cel7B is present at a molar proportion of 10:1. This ratio has previously been shown to lead to synergy. This decrease in association rate is observed in a wide range of total enzyme concentrations, from sub nM to µM concentrations. This decrease in kON is consistent with the formation of cellulase clusters recently observed by others using atomic force microscopy.


Subject(s)
Cellulase , Cellulases , Trichoderma , Hydrolysis , Cellulose/chemistry , Cellulases/chemistry , Cellulase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism
2.
Soft Matter ; 19(15): 2815-2822, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37000534

ABSTRACT

Self-assembly of synthetic lipid vesicles via lipid membrane fusion is a versatile tool for creating biomimetic nano- and micron-sized particles. These so-called liposomes are used in the development of biosensing platforms, design of drug delivery schemes, and for investigating protein-mediated fusion of biological membranes. This work demonstrates DNA-induced liposome fusion in a nanofluidic trap where the reaction occurs in a 15 femtoliter volume at homogeneous mixing. In contrast to current methods for fusion in bulk, we show that the fusion reaction follows second-order kinetics with a fusion rate of (170 ± 30)/(M-1s-1) times the square number of DNA molecules per liposome. The nanofluidic trapping gives a full characterization of the size and charge of the liposomes before and after fusion. The chip-based approach limits the amount of sample (down to 440 vesicles) and can be parallelized for systematic studies in synthetic biology, diagnostics, and drug delivery.


Subject(s)
DNA , Liposomes , Cell Membrane , Membrane Fusion , Lipids
3.
ACS Sens ; 5(12): 4057-4063, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33320542

ABSTRACT

Nanometer-sized liposomes decorated with macromolecules are increasingly used as drug delivery vehicles due to their long lifetimes and target cell specificity, but surface characterization methods often change their properties, which leads to incorrect results. Ligand binding is commonly applied for characterizing these surface modifications. Here, we use a nanofluidic-based label-free sensor for real-time sensing of ligands binding to liposomes. The liposomes are trapped in a nanochannel with a salt concentration gradient, and as the trapping position depends on the liposomes' zeta potential, it changes when charged ligands bind to the liposomes. Our sensing method does not require immobilization of the liposomes or labeling of the ligands with fluorophores, which may both affect the sensing. The zeta potential sensing is demonstrated by measuring hybridization of DNA targets with complementary DNA probes on liposome surfaces. DNA hybridization is monitored for both ensembles and individual liposomes, the latter allows for analysis of ensemble heterogeneity, and we demonstrate sensitivity to changes in surface charge down to 1.5%. DNA hybridization is used to demonstrate label-free sensing, but the method also has potential applications within exosome characterization, where biorecognition of, e.g., surface DNA, proteins, and antibodies is a promising candidate for early stage cancer diagnostics.


Subject(s)
DNA , Liposomes , Fluorescent Dyes , Nucleic Acid Hybridization , Proteins
4.
Nat Commun ; 11(1): 2337, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32393750

ABSTRACT

Exosomes are nanometer-sized lipid vesicles present in liquid biopsies and used as biomarkers for several diseases including cancer, Alzheimer's, and central nervous system diseases. Purification and subsequent size and surface characterization are essential to exosome-based diagnostics. Sample purification is, however, time consuming and potentially damaging, and no current method gives the size and zeta potential from a single measurement. Here, we concentrate exosomes from a dilute solution and measure their size and zeta potential in a one-step measurement with a salt gradient in a capillary channel. The salt gradient causes oppositely directed particle and fluid transport that trap particles. Within minutes, the particle concentration increases more than two orders of magnitude. A fit to the spatial distribution of a single or an ensemble of exosomes returns both their size and surface charge. Our method is applicable for other types of nanoparticles. The capillary is fabricated in a low-cost polymer device.

5.
Proc Natl Acad Sci U S A ; 115(44): 11192-11197, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30322920

ABSTRACT

To elucidate cellular diversity and clonal evolution in tissues and tumors, one must resolve genomic heterogeneity in single cells. To this end, we have developed low-cost, mass-producible micro-/nanofluidic chips for DNA extraction from individual cells. These chips have modules that collect genomic DNA for sequencing or map genomic structure directly, on-chip, with denaturation-renaturation (D-R) optical mapping [Marie R, et al. (2013) Proc Natl Acad Sci USA 110:4893-4898]. Processing of single cells from the LS174T colorectal cancer cell line showed that D-R mapping of single molecules can reveal structural variation (SV) in the genome of single cells. In one experiment, we processed 17 fragments covering 19.8 Mb of the cell's genome. One megabase-large fragment aligned well to chromosome 19 with half its length, while the other half showed variable alignment. Paired-end single-cell sequencing supported this finding, revealing a region of complexity and a 50-kb deletion. Sequencing struggled, however, to detect a 20-kb gap that D-R mapping showed clearly in a megabase fragment that otherwise mapped well to the reference at the pericentromeric region of chromosome 4. Pericentromeric regions are complex and show substantial sequence homology between different chromosomes, making mapping of sequence reads ambiguous. Thus, D-R mapping directly, from a single molecule, revealed characteristics of the single-cell genome that were challenging for short-read sequencing.


Subject(s)
Chromosome Mapping/methods , DNA/genetics , Genome/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Cell Line, Tumor , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 4/genetics , Clonal Evolution/genetics , Colorectal Neoplasms/genetics , Genomics/methods , Humans , Sequence Deletion/genetics
6.
Nanoscale ; 10(3): 1376-1382, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29300409

ABSTRACT

Nucleotide incorporation by DNA polymerase forms the basis of DNA sequencing-by-synthesis. In current platforms, either the single-stranded DNA or the enzyme is immobilized on a solid surface to locate the incorporation of individual nucleotides in space and/or time. Solid-phase reactions may, however, hinder the polymerase activity. We demonstrate a device and a protocol for the enzymatic labeling of genomic DNA arranged in a dense array of single molecules without attaching the enzyme or the DNA to a surface. DNA molecules accumulate in a dense array of pits embedded within a nanoslit due to entropic trapping. We then perform ϕ29 polymerase extension from single-strand nicks created on the trapped molecules to incorporate fluorescent nucleotides into the DNA. The array of entropic traps can be loaded with λ-DNA molecules to more than 90% of capacity at a flow rate of 10 pL min-1. The final concentration can reach up to 100 µg mL-1, and the DNA is eluted from the array by increasing the flow rate. The device may be an important preparative module for carrying out enzymatic processing on DNA extracted from single-cells in a microfluidic chip.


Subject(s)
DNA/chemistry , Microfluidic Analytical Techniques , Nucleotides/chemistry , Sequence Analysis, DNA , DNA-Directed DNA Polymerase , Genomics , Nanotechnology
7.
Sci Rep ; 7(1): 17893, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29263336

ABSTRACT

Next-generation sequencing (NGS) has caused a revolution, yet left a gap: long-range genetic information from native, non-amplified DNA fragments is unavailable. It might be obtained by optical mapping of megabase-sized DNA molecules. Frequently only a specific genomic region is of interest, so here we introduce a method for selection and enrichment of megabase-sized DNA molecules intended for single-molecule optical mapping: DNA from a human cell line is digested by the NotI rare-cutting enzyme and size-selected by pulsed-field gel electrophoresis. For demonstration, more than 600 sub-megabase- to megabase-sized DNA molecules were recovered from the gel and analysed by denaturation-renaturation optical mapping. Size-selected molecules from the same gel were sequenced by NGS. The optically mapped molecules and the NGS reads showed enrichment from regions defined by NotI restriction sites. We demonstrate that the unannotated genome can be characterized in a locus-specific manner via molecules partially overlapping with the annotated genome. The method is a promising tool for investigation of structural variants in enriched human genomic regions for both research and diagnostic purposes. Our enrichment method could potentially work with other genomes or target specified regions by applying other genomic editing tools, such as the CRISPR/Cas9 system.


Subject(s)
DNA/genetics , Chromosome Mapping/methods , Electrophoresis, Gel, Pulsed-Field/methods , Female , Genome, Human/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Restriction Mapping/methods , Sequence Analysis, DNA/methods
8.
ACS Nano ; 11(5): 4553-4563, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28453288

ABSTRACT

The ability to handle single, free molecules in lab-on-a-chip systems is key to the development of advanced biotechnologies. Entropic confinement offers passive control of polymers in nanofluidic systems by locally asserting a molecule's number of available conformation states through structured landscapes. Separately, a range of plasmonic configurations have demonstrated active manipulation of nano-objects by harnessing concentrated electric fields. The integration of these two independent techniques promises a range of sophisticated and complementary functions to handle, for example, DNA, but numerous difficulties, in particular, conflicting requirements of channel size, have prevented progress. Here, we show that metallic V-groove waveguides, embedded in fluidic nanoslits, form entropic potentials that trap and guide DNA molecules over well-defined routes while simultaneously promoting photothermal transport of DNA through the losses of plasmonic modes. The propulsive forces, assisted by in-coupling to propagating channel plasmon polaritons, extend along the V-grooves with a directed motion up to ≈0.5 µm·mW-1 away from the input beam and λ-DNA velocities reaching ≈0.2 µm·s-1·mW-1. The entropic trapping enables the V-grooves to be flexibly loaded and unloaded with DNA by variation of transverse fluid flow, a process that is selective to biopolymers versus fixed-shape objects and also allows the technique to address the challenges of nanoscale interaction volumes. Our self-aligning, light-driven actuator provides a convenient platform to filter, route, and manipulate individual molecules and may be realized wholly by wafer-scale fabrication suitable for parallelized investigation.


Subject(s)
Equipment Design/methods , Nanotechnology/methods , Biopolymers/chemistry , DNA/classification , Entropy , Light Signal Transduction , Molecular Conformation , Polymers/chemistry
10.
Phys Rev E ; 93: 042405, 2016 04.
Article in English | MEDLINE | ID: mdl-27176327

ABSTRACT

We determine the nonuniform stretching of and tension in a mega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA-e.g., native DNA extracted from human cells or bacteria-must be stretched with ease for inspection, this method applies.


Subject(s)
DNA/metabolism , Materials Testing , Mechanical Phenomena , Base Pairing , Biomechanical Phenomena , DNA/chemistry , Models, Molecular , Monte Carlo Method , Nanotechnology , Temperature
11.
Phys Rev E ; 94(6-1): 062401, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28085401

ABSTRACT

We provide a tool for data-driven modeling of motility, data being time-lapse recorded trajectories. Several mathematical properties of a model to be found can be gleaned from appropriate model-independent experimental statistics, if one understands how such statistics are distorted by the finite sampling frequency of time-lapse recording, by experimental errors on recorded positions, and by conditional averaging. We give exact analytical expressions for these effects in the simplest possible model for persistent random motion, the Ornstein-Uhlenbeck process. Then we describe those aspects of these effects that are valid for any reasonable model for persistent random motion. Our findings are illustrated with experimental data and Monte Carlo simulations.


Subject(s)
Microbiota/physiology , Models, Biological , Computer Simulation , Monte Carlo Method , Motion , Time-Lapse Imaging
12.
Phys Rev Lett ; 114(19): 198303, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024203

ABSTRACT

We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 µm/s, if the single-molecule DNA globule has a sufficiently large shear modulus. Increase in the shear modulus is accomplished by compacting the DNA molecules to minimal coil size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot, where concentration occurs, as a function of PEG concentration and flow speed using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions for next-generation DNA-sequencing libraries will be an important application of this development.


Subject(s)
DNA/chemistry , Oligonucleotide Array Sequence Analysis/methods , DNA/genetics , DNA/isolation & purification , Microtechnology , Nucleic Acid Conformation , Oligonucleotide Array Sequence Analysis/instrumentation , Polyethylene Glycols/chemistry , Shear Strength
13.
Phys Rev Lett ; 113(26): 268301, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615393

ABSTRACT

We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement of the thermophoretic force in a static configuration finds forces up to 130 fN. This is eleven times stronger than the force experienced by the same molecule in the same thermal gradient in bulk, where the molecule shields itself. Our stronger forces stretch the middle of the molecule up to 80% of its contour length. We find the Soret coefficient per unit length of DNA at various ionic strengths. It agrees, with novel precision, with results obtained in bulk for DNA too short to shield itself and with the thermodynamic model of thermophoresis.


Subject(s)
DNA/chemistry , Models, Chemical , Bacteriophage T4/chemistry , Bacteriophage T4/genetics , DNA, Viral/chemistry , Hot Temperature , Microfluidic Analytical Techniques/methods , Nanoparticles/chemistry , Osmolar Concentration , Thermodynamics
14.
Proc Natl Acad Sci U S A ; 110(13): 4893-8, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23479649

ABSTRACT

We show how a bird's-eye view of genomic structure can be obtained at ∼1-kb resolution from long (∼2 Mb) DNA molecules extracted from whole chromosomes in a nanofluidic laboratory-on-a-chip. We use an improved single-molecule denaturation mapping approach to detect repetitive elements and known as well as unique structural variation. Following its mapping, a molecule of interest was rescued from the chip; amplified and localized to a chromosome by FISH; and interrogated down to 1-bp resolution with a commercial sequencer, thereby reconciling haplotype-phased chromosome substructure with sequence.


Subject(s)
Chromosome Mapping , Chromosomes, Human , DNA , Genome, Human , Microfluidic Analytical Techniques , Chromosome Mapping/instrumentation , Chromosome Mapping/methods , Chromosomes, Human/chemistry , Chromosomes, Human/genetics , DNA/chemistry , DNA/genetics , Humans , In Situ Hybridization, Fluorescence/instrumentation , In Situ Hybridization, Fluorescence/methods , Male , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
15.
Rep Prog Phys ; 75(10): 106601, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22975868

ABSTRACT

DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement--including the effect of varying ionic strength--and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.


Subject(s)
DNA/chemistry , DNA/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
16.
Proc Natl Acad Sci U S A ; 108(17): 6853-6, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21474778

ABSTRACT

The metastatic invasion of cancer cells from primary tumors to distant ecological niches, rather than the primary tumors, is the cause of much cancer mortality [Zhang QB, et al. (2010) Int J Cancer 126:2534-2541; Chambers AF, Goss PE (2008) Breast Cancer Res 10:114]. Metastasis is a three-dimensional invasion process where cells spread from their site of origin and colonize distant microenvironmental niches. It is critical to be able to assess quantitatively the metastatic potential of cancer cells [Harma V, et al. (2010) PLoS ONE 5:e10431]. We have constructed a microfabricated chip with a three-dimensional topology consisting of lowlands and isolated square highlands (Tepuis), which stand hundreds of microns above the lowlands, in order to assess cancer cell metastatic potential as they invade the highlands. As a test case, the invasive ascents of the Tepui by highly metastatic PC-3 and noninvasive LNCaP prostate cancer cells were used. The vertical ascent by prostate cancer cells from the lowlands to the tops of the Tepui was imaged using confocal microscopy and used as a measure of the relative invasiveness. The less-metastatic cells (LNCaP) never populated all available tops, leaving about 15% of them unoccupied, whereas the more metastatic PC-3 cells occupied all available Tepuis. We argue that this distinct difference in invasiveness is due to contact inhibition.


Subject(s)
Microchip Analytical Procedures , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Humans , Male , Neoplasm Invasiveness , Neoplasm Metastasis , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...