Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 28938-28948, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780164

ABSTRACT

In the domain of organic mixed ionic-electronic conductors (OMIECs), simultaneous transport and coupling of ionic and electronic charges are crucial for the function of electrochemical devices in organic electronics. Understanding conduction mechanisms and chemical reactions in operational devices is pivotal for performance enhancement and is necessary for the informed and systematic development of more promising materials. Surface-enhanced Raman spectroscopy (SERS) is a potent tool for monitoring electrochemical evolution and dynamic doping in operational devices, offering enhanced sensitivity to subtle spectral changes. We demonstrate the utility of SERS for in situ tracking of doping in OMIECs in an organic light-emitting electrochemical cell (LEC) containing a conjugated polymer (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]; MEH-PPV), a molecular anion (lithium triflate), and an electrolyte network (poly(ethylene oxide); PEO). SERS enhancement is achieved via an interleaved layer of gold particles formed by spontaneous breakup of a deposited thin gold film. The results successfully highlight the ability of SERS to unveil time-resolved MEH-PPV doping and polaron formation, elucidating the effects of triflate ion transfer in the operating device and validating the electrochemical doping model in LECs.

SELECTION OF CITATIONS
SEARCH DETAIL
...