Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 6(3): 355-9, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-26261947

ABSTRACT

A successful elucidation of the near-ultraviolet electronic circular dichroism spectrum of a short double-stranded DNA is reported. Time-dependent density functional theory methods are shown to accurately predict spectra and assign bands on the microscopic base-pair scale, a finding that opens the field for using circular dichroism spectroscopy as a sensitive nanoscale probe of DNA to reveal its complex interactions with the environment.


Subject(s)
Base Pairing , DNA/chemistry , Electrons , Circular Dichroism , Molecular Dynamics Simulation , Quantum Theory
2.
J Comput Chem ; 35(25): 1809-14, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25060998

ABSTRACT

We present a detailed study of the basis set dependence of electronic g-tensors for transition metal complexes calculated using Kohn-Sham density functional theory. Focus is on the use of locally dense basis set schemes where the metal is treated using either the same or a more flexible basis set than used for the ligand sphere. The performance of all basis set schemes is compared to the extrapolated complete basis set limit results. Furthermore, we test the performance of the aug-cc-pVTZ-J basis set developed for calculations of NMR spin-spin and electron paramagnetic resonance hyperfine coupling constants. Our results show that reasonable results can be obtain when using small basis sets for the ligand sphere, and very accurate results are obtained when an aug-cc-pVTZ basis set or similar is used for all atoms in the complex.

3.
J Chem Theory Comput ; 10(3): 1164-71, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-26580189

ABSTRACT

We present a combination of the polarizable embedding (PE) scheme with the complex polarization propagator (CPP) method with the aim of calculating response properties including relaxation for large and complex systems. This new approach, termed PE-CPP, will benefit from the highly advanced description of the environmental electrostatic potential and polarization in the PE method as well as the treatment of near-resonant effects in the CPP approach. The PE-CPP model has been implemented in a Kohn-Sham density functional theory approach, and we present pilot calculations exemplifying the implementation for the UV/vis and carbon K-edge X-ray absorption spectra of the protein plastocyanin. Furthermore, technical details associated with a PE-CPP calculation are discussed.

4.
J Chem Phys ; 138(21): 214106, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23758357

ABSTRACT

The first correlated ab initio four-component calculations of electron paramagnetic resonance (EPR) g-tensors for doublet radicals are reported. We have implemented a first-order degenerate perturbation theory approach based on the four-component Dirac-Coulomb Hamiltonian and fully relativistic configuration interaction wave functions in the DIRAC program package. We find that the correlation effects on the g-tensors can be sufficiently well described with manageable basis sets of triple-zeta quality and manageable configuration spaces. The new fully relativistic EPR module in DIRAC should be useful for benchmarking density functional theory approaches, however, with future optimization of the code we believe it will also be useful for applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...