Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 34(43)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35973418

ABSTRACT

The Stark effect in confined geometries is sensitive to boundary conditions. The vanishing wave function required on the boundary of nanostructures described by the infinite-barrier Schrödinger equation means that such states are only weakly polarizable. In contrast, materials described by the Dirac equation are characterized by much less restrictive boundary conditions. Focusing on honeycomb-lattice armchair nanoribbons, we demonstrate an enhancement by more than an order of magnitude. This result follows from an exact Dirac polarizability valid for arbitrary mass, momentum and ribbon width. Moreover, an exact expression for the frequency-dependent dynamic polarizability has been derived. Our analytic Dirac results have been validated by comparison to numerical results from atomistic models.

2.
Opt Express ; 27(25): 36941-36952, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873465

ABSTRACT

We numerically study the effect of the quantum spill-out (QSO) on the plasmon mode indices of an ultra-thin metallic slab, using the Fourier modal method (FMM). To improve the convergence of the FMM results, a novel nonlinear coordinate transformation is suggested and employed. Furthermore, we present a perturbative approach for incorporating the effects of QSO on the plasmon mode indices, which agrees very well with the full numerical results. The perturbative approach also provides additional physical insight, and is used to derive analytical expressions for the mode indices using a simple model for the dielectric function. The analytical expressions reproduce the results obtained from the numerically-challenging spill-out problem with much less effort and may be used for understanding the effects of QSO on other plasmonic structures.

3.
Appl Opt ; 55(6): 1356-65, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26906589

ABSTRACT

In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

4.
J Phys Condens Matter ; 27(22): 225502, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25989621

ABSTRACT

On the basis of a tight binding model we reveal how the bandgap in bilayer graphene antidot lattices (GALs) follows a different scaling law than in monolayer GALs and we provide an explanation using the Dirac model. We show that previous findings regarding the criteria for the appearance of a bandgap in monolayer GALs are equally applicable to the bilayer case. Furthermore, we briefly investigate the optical properties of bilayer GALs and show that estimates of the bandgap using optical methods could lead to overestimates due to weak oscillator strength of the lowest transitions. Finally, we investigate the effect of imposing an electric field perpendicular to the bilayer GAL structure and find that the bandgap tunability may be extended as compared to pristine bilayer graphene.

5.
Opt Express ; 22 Suppl 3: A651-62, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24922373

ABSTRACT

The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.

6.
Nano Lett ; 14(5): 2907-13, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24707792

ABSTRACT

Nanostructured graphene on SiO2 substrates paves the way for enhanced light-matter interactions and explorations of strong plasmon-phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with structural control down to the sub-100 nm regime. The interaction between graphene plasmon modes and the substrate phonons is experimentally demonstrated, and structural control is used to map out the hybridization of plasmons and phonons, showing coupling energies of the order 20 meV. Our findings are further supported by theoretical calculations and numerical simulations.

7.
J Phys Condens Matter ; 25(32): 325301, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23838573

ABSTRACT

Carbon nanotubes (CNTs) of armchair and zigzag type contain an inversion centre, and are thus intrinsically unable to generate dipole even-order nonlinearities, such as second harmonic generation (SHG). Breaking the inversion symmetry by application of an external voltage transversal to the CNT axis will, however, induce a second harmonic response. Similarly, additional non-vanishing second harmonic tensor elements will be induced in chiral tubes already displaying an intrinsic response. Many geometries realizing such a setup can be envisaged, e.g., an experimental gate setup or deposition of CNTs on, or integration in, strongly polarized host media, perhaps facilitating a tunable second harmonic response. In this work, we calculate the SHG signal from CNTs under transversally applied electric fields based on a tight-binding model.

8.
Opt Express ; 21 Suppl 2: A208-20, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482282

ABSTRACT

We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

9.
Opt Express ; 21 Suppl 1: A84-95, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23389279

ABSTRACT

The development of backside reflectors (BSRs) is crucial for the efficiency of future low cost thin-film silicon solar cells. In this work, the scattering efficiency of bare aluminum BSRs with different pore sizes and ordering of surface microstructures are investigated. The BSRs were fabricated by utilizing the process of self-ordering anodic oxidation on aluminum foils resulting in regions with an approximately hexagonally periodic surface microstructure. It was found that the total and diffuse light scattering reflectance spectra showed opposite tendencies when increasing the pore size of the microstructures. When the pore size was increased to 700 nm, more than 68% of the incident light with wavelengths from 250 nm to 800 nm was reflected by scattering. For a similar geometry, except that it had less ordering, this number was increased to around 80%. This large fraction of reflected light observed in the form of scattering is promising for the use of the considered geometries as BSRs in thin-film silicon solar cells.


Subject(s)
Aluminum/chemistry , Light , Nanotechnology/methods , Refractometry/methods , Scattering, Radiation , Silicon/chemistry , Solar Energy , Electric Power Supplies , Equipment Design , Nanostructures/chemistry
10.
Opt Express ; 19 Suppl 6: A1190-5, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109614

ABSTRACT

In many applications, compact concentrator lenses are used for collimating light from LEDs into high output beams. When optimizing lens designs, the LED is often approximated as a point source. At small lens-to-LED size ratios this is known to be inaccurate, but the performance compared to optimizations with more realistic models is rarely addressed. This paper examines the reliability of a point source model in compact lens design by comparing with optimisations that use a factory measured LED ray-file. The point source is shown to cause significant, unnecessary efficiency loss even at large lens sizes, while the use of a ray-file allows for a >55% reduction in the footprint area of the lens. The use of point source approximations in compact lens designs is therefore generally discouraged.

11.
Appl Opt ; 50(24): 4860-7, 2011 Aug 20.
Article in English | MEDLINE | ID: mdl-21857711

ABSTRACT

In the stage illumination industry, LED technology is promising both in terms of energy use and novel features, but it also has inherent issues. This paper presents a solution to the poor color homogeneity arising when multiple rectangular images formed from LED dies are combined into a circular spot profile. Using ray tracing, a nonrotationally symmetric collimating lens was optimized to round off such die images. The result is a high-output lens with an almost perfectly circular spot. In a simulated red green blue color mixing projector with seven LEDs, the lens reduced measurable color inhomogeneity by ≈24.1%, with a 5.3% luminous gain, compared to the best rotationally symmetric benchmark lens.

12.
ACS Nano ; 5(1): 523-9, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21158482

ABSTRACT

Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer scale periodic array of holes in the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters of the lattice. The hole diameter, hole geometry, lattice geometry, and the separation of the holes are parameters that all play an important role in determining the size of the band gap, which, for technological applications, should be at least of the order of tenths of an eV. We investigate four different hole configurations: the rectangular, the triangular, the rotated triangular, and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap: the triangular arrangement displays always a sizable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using Clar sextet theory, and we find that a sufficient condition for a large gap is that the number of sextets exceeds one-third of the total number of hexagons in the unit cell. Furthermore, we investigate nonisosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in geometry.

13.
Opt Express ; 18(25): 26245-58, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21164973

ABSTRACT

Antireflective properties of one-dimensional periodically microstructured lens surfaces (refractive index 1.5) are studied with the Green's function surface integral equation method, and design guidelines are obtained. Special attention is given to the requirement of having practically all incident light transmitted in the fundamental transmission diffraction order. The effect of the presence of higher transmission diffraction orders is studied to determine if such more easily fabricated structures will be useful. The decrease of optimum fill factor of a periodic array of subwavelength ridges with structure period is explained as a waveguiding effect. Near-fields are calculated illustrating standing-wave interference and waveguiding effects for ridge structures, and adiabatic field transformation for tapered structures, including evanescent near-fields in in- and out-coupling regions. The antireflective properties of tapered geometries are considered for a wide range of angles of light incidence. It is found that while the reflection can be very small this rarely implies high transmission into the fundamental transmission diffraction order when higher-order transmission diffraction orders exist. This leads to the guideline that for visible and normally incident light the surface structure period should not be larger than ~300 nm, and a smaller period is needed in the case of oblique light incidence.


Subject(s)
Algorithms , Lenses/standards , Photometry/instrumentation , Guidelines as Topic , Internationality , Miniaturization , Photometry/standards
14.
J Phys Condens Matter ; 20(27): 275211, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-21694372

ABSTRACT

Using a universal density of states (Mintmire and White 1998 Phys. Rev. Lett. 81 2506), we have found an analytic expression for the long-axis linear susceptibility of single-walled carbon nanotubes valid for arbitrary diameter and chirality. The applicability of our general expression has been assessed by comparison with numerical calculations. Excellent agreement is demonstrated in the low-energy range for semiconducting carbon nanotubes having a moderate or large diameter. The agreement is less convincing for metallic nanotubes having the same diameter as semiconducting ones and the reason for this difference has been clarified. Based on the simple closed-form expression for the linear susceptibility and using the perturbation treatment developed by Aspnes and Rowe (1972 Phys. Rev. B 5 4022), an analytic expression for the third-order nonlinear optical susceptibility χ((3))(ω;0,0,ω) has been derived for arbitrary semiconducting single-walled carbon nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...