Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Percept Mot Skills ; 128(3): 1183-1196, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33722102

ABSTRACT

The purpose of this study was to examine the effects of listening to pre-exercise music on bench press performance. We recruited 10 resistance trained males (M age= 22.8, SD = 5.8 years; M height= 173.7, SD = 8.3 cm; M body mass = 81.0, SD = 18.2 kg) for this crossover counterbalanced research design. Participants completed two bench press exercise trials of (a) No music (NM), and (b) Pre-exercise music (PreExM) separated by at least 48 hours. For each trial, following a warm-up, participants listened to music or no music for three minutes. After this 3-minute period, they completed one set of bench press repetitions with maximum explosive intent at 75% one repetition maximum (1 RPM). We used a rotary encoder to measure power and velocity of barbell movement. After a 3-minute rest during which they again listened to music or no music, participants completed another set of repetitions to failure (RTF) at 75% of 1RM. Immediately following this second set of repetitions, we measured exercise motivation with a visual analog scale (VAS). We found that the PreExM condition increased mean power output (p = 0.005; d = 0.792) and barbell velocity (p = 0.015; d = 0.722). RTF were significantly higher during the PreExM versus NM trial (p = 0.002; d = 0.985), and motivation was significantly higher in the PreExM trial versus NM (p = 0.001; d = 0.932). These findings suggest improved muscle power explosiveness and strength-endurance when listening to music before a bench press exercise. From a practical standpoint, athletes who have the option of listening to music immediately prior to resistance exercise may benefit from its use.


Subject(s)
Music , Resistance Training , Adult , Exercise Therapy , Humans , Male , Muscle Strength , Muscle, Skeletal , Weight Lifting , Young Adult
2.
Res Q Exerc Sport ; 92(3): 492-499, 2021 09.
Article in English | MEDLINE | ID: mdl-32633217

ABSTRACT

Purpose: The purpose of this study was to investigate how time-of-day training preference influences resistance-exercise performance. Methods: Resistance trained males (n = 12) were recruited for this study. In a crossover, counterbalanced design, participants completed two separate bench-press exercise trials at different times of day: (a) morning (AM; 8:00 hr) and (b) evening (PM; 16:00 hr). Participants answered a questionnaire on time-of-day training preference and completed a preferred (PREF) and nonpreferred (NON-PREF) time-of-day trial. For each trial, motivation was measured using a visual analog scale prior to exercise. Participants completed 2 sets × 2 repetitions at 75% 1-RM with maximum explosiveness separated by 5 min of rest. Mean barbell velocity was measured using a linear position transducer. Participants then completed 1 set × repetitions to failure (RTF) at 75% 1-RM. Rate of perceived exertion (RPE) was measured immediately following exercise. Results: Regardless of preference, velocity (p = .025; effect size (ES) = 0.43) was higher during the PM versus AM trial. However, there were no significant differences in velocity (p = .368; ES = 0.37) between PREF and NON-PREF time of day. There were no significant differences for repetitions between PREF and NON-PREF times (p = .902; ES = 0.03). Motivation was higher in the PREF time versus NON-PREF (p = .015; ES = 0.68). Furthermore, RPE was significantly lower during the PREF time of day (p = .048; 0.55). Conclusions: Despite higher barbell velocity collectively at PM times, time-of-training preference did not largely influence resistance-exercise performance, while motivation is higher and RPE is lower during preferred times.


Subject(s)
Motivation/physiology , Muscle Strength/physiology , Resistance Training/methods , Weight Lifting/physiology , Cross-Over Studies , Humans , Male , Time Factors , Young Adult
3.
Percept Mot Skills ; 128(1): 338-352, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32741251

ABSTRACT

The purpose of this study was to investigate physical and cognitive performance during dual task conditions of upper-extremity (UE) or full-body (FB) rowing exercise. In a crossover counterbalanced design, college-aged male and female participants completed five conditions: (a) Sitting, (b) Single task UE rowing, (c) Single task FB rowing, (d) Dual task UE rowing, and (e) Dual task FB rowing. For single task UE and FB rowing conditions, participants were asked to row as hard as possible. After sitting and dual-task conditions, we administered the Paced Auditory Serial Addition Test (PASAT) and a word-list memory test. We analyzed participants' absolute differences (single task - dual task) in power output and their cognitive test scores to compare UE and FB rowing. There were no significant absolute differences from sitting to dual task conditions of UE and FB rowing for either PASAT (p = 0.958) or word list memory (p = 0.899) cognitive scores. Absolute power output loss from single to dual task conditions was significantly higher in FB versus UE for PASAT (p = 0.039; d = 0.54) and word list memory (p = 0.021; d = 0.66) in the dual task condition. These results suggest that, while cognitive performance was preserved regardless of the amount of muscle mass activated during dual task rowing, physical performance suffered more during FB than UE rowing under the dual task condition. These findings have important implications for optimizing cognitive and physical performance in dual task situations.


Subject(s)
Cognition , Task Performance and Analysis , Exercise , Female , Gait , Humans , Male , Upper Extremity , Young Adult
4.
Percept Mot Skills ; 127(5): 912-924, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32493179

ABSTRACT

This study investigated the effects of preferred and non-preferred warm-up music listening conditions on subsequent exercise performance. A total of 12 physically active male and female participants engaged in a crossover, counterbalanced research design in which they completed exercise trials after 3 different warm-up experiences of (a) no music (NM), (b) preferred music (PREF), and (c) nonpreferred music (NON-PREF). Participants began warming up by rowing at 50% of of age-predicted heart rate maximum (HRmax) for 5 minutes while exposed to the three music conditions. Immediately following the warm-up and cessation of any music, participants completed a 2000-m rowing time trial as fast as possible. Relative power output, trial time, heart rate, rating of perceived exertion, and motivation were analyzed. Results indicated that, compared with NM, relative power output was significantly higher (p = .018), trial time was significantly lower (p = .044), and heart rate was significantly higher (p = .032) during the PREF but not the NON-PREF condition. Rating of perceived exertion was not altered, regardless of music condition (p > .05). Motivation to exercise was higher during the PREF condition versus the NM (p = .001) and NON-PREF (p < .001) conditions. Listening to preferred warm-up music improved subsequent exercise performance compared with no music, while nonpreferred music did not impart ergogenic benefit.


Subject(s)
Athletic Performance/psychology , Exercise/psychology , Motivation , Music/psychology , Warm-Up Exercise/psychology , Athletic Performance/physiology , Cross-Over Studies , Exercise/physiology , Exercise Test/methods , Female , Heart Rate/physiology , Humans , Male , Warm-Up Exercise/physiology , Young Adult
5.
J Funct Morphol Kinesiol ; 5(2)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-33467255

ABSTRACT

The purpose of this study was to investigate the effects of nocebo administration on perceived soreness and exercise performance following unaccustomed resistance exercise. Untrained males were randomly assigned to one of two treatments: (1) control or (2) negative-belief. For the negative-belief group, participants were given a capsule before exercise containing 400 mg of an inert substance (gluten-free cornstarch) and were told the supplement would increase muscle soreness. The control group received no treatment. An algometer and pain scale was used to obtain soreness, and a goniometer was used to measure elbow range of motion (ROM). Participants completed an eccentric bicep curl pyramid with their non-dominant arm. Rate of perceived exertion (RPE) and repetitions were recorded. Then, 48 h after the initial exercise bout, participants repeated all procedures. Perceived soreness, ROM, average RPE, and total repetitions performed were analyzed. Perceived soreness was significantly higher in both control and negative-belief groups 48 h after exercise (p < 0.001; η2 = 0.23). ROM was significantly lower 48 h post in the negative-belief group (p = 0.004; d = 1.83) while no differences existed for controls (p = 0.999; d = 0.16). Average RPE was unaffected between groups (p = 0.282; η2 = 0.07). Total repetitions were significantly lower 48 h post in the negative-belief group (p < 0.001; d = 2.51) while no differences existed for the controls (p = 0.999; d = 0.08). Findings suggest that 48 h after unaccustomed resistance exercise, negative expectation does not worsen soreness but hinders ROM and exercise performance.

6.
J Funct Morphol Kinesiol ; 5(3)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-33467269

ABSTRACT

The purpose of this study was to investigate balance and motor control in dancers and non-dancers with different foot positions. Physically active female dancers (n = 11) and non-dancers (n = 9) randomly completed two balance tests in a single visit: 1) Y-balance test (YBT), and 2) motor control test (MCT). Each test was completed with two different foot positions: 1) first ballet position in which heels were touching and feet were externally rotated to 140 degrees, and 2) sixth ballet position in which heels were spaced 10 cm apart and forward parallel. For the YBT, participants completed three attempts at anterior, posteromedial, and posterolateral reaches, which were averaged and standardized to limb length for a composite score. For the MCT, participants completed a multi-directional target test on a Biosway balance system, and accuracy and time to completion were analyzed. Findings revealed no differences in YBT score (p = 0.255), MCT score (p = 0.383), or MCT time (p = 0.306) between groups in the sixth position. However, dancers displayed better YBT scores (p = 0.036), MCT scores (p = 0.020), and faster MCT times (p = 0.009) in the first position. Results suggest that superior balance and motor control in dancers may be limited to less innate dance-specific foot positions.

SELECTION OF CITATIONS
SEARCH DETAIL
...