Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(12): 8373-8379, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28280802

ABSTRACT

In this article we study the ultrafast dynamics of excitons and charge carriers photogenerated in two-dimensional in-plane heterostructures, namely, CdSe-CdTe nanoplatelets. We combine transient absorption and two-dimensional electronic spectroscopy to study charge transfer and delocalization from a few tens of femtoseconds to several nanoseconds. In contrast with spherical nanocrystals, the relative alignment of the electron and hole states of CdSe and CdTe in thin 2D nanoplatelets does not lead to a type-II heterostructure. Following the excitation in CdSe or CdTe materials, the electron preferentially delocalises instantaneously over the whole heterostructure. In addition, depending on the crown material (CdTe versus CdTeSe), the hole transfers either to trap states or to the crown, within a few hundreds of femtoseconds. We conclude that the photoluminescence band, at lower energy than the CdSe and CdTe first exciton transition, does not result from the recombination of the charge carriers at the charge transfer state but involves localised hole states.

2.
Nanoscale ; 8(39): 17204-17212, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27722399

ABSTRACT

Recently developed two-dimensional colloidal semiconductor nanocrystals, or nanoplatelets (NPLs), extend the palette of solution-processable free-standing 2D nanomaterials of high performance. Growing CdSe and CdS parts subsequently in either side-by-side or stacked manner results in core-crown or core/shell structures, respectively. Both kinds of heterogeneous NPLs find efficient applications and represent interesting materials to study the electronic and lattice excitations and interaction between them under strong one-directional confinement. Here, we investigated by Raman and infrared spectroscopy the phonon spectra and electron-phonon coupling in CdSe/CdS core/shell and core-crown NPLs. A number of distinct spectral features of the two NPL morphologies are observed, which are further modified by tuning the laser excitation energy Eexc between in- and off-resonant conditions. The general difference is the larger number of phonon modes in core/shell NPLs and their spectral shifts with increasing shell thickness, as well as with Eexc. This behaviour is explained by strong mutual influence of the core and shell and formation of combined phonon modes. In the core-crown structure, the CdSe and CdS modes preserve more independent behaviour with only interface modes forming the phonon overtones with phonons of the core.

3.
Nano Lett ; 13(7): 3321-8, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23731211

ABSTRACT

Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...