Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 81(6): 1368-1375, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29847132

ABSTRACT

Four new microcystin congeners are described including the first three examples of microcystins containing the rare doubly homologated tyrosine residue 2-amino-5-(4-hydroxyphenyl)pentanoic acid (Ahppa) (1-4). Large-scale harvesting and biomass processing allowed the isolation of substantial quantities of these compounds, thus enabling complete structure determination by NMR as well as cytotoxicity evaluation against selected cancer cell lines. The new Ahppa-toxins all incorporate Ahppa residues at the 2-position, and one of these also has a second Ahppa at position 4. The two most lipophilic Ahppa-containing microcystins showed 10-fold greater cytotoxic potency against human tumor cell lines (A549 and HCT-116) compared to microcystin-LR (5). The presence of an Ahppa residue in microcystin congeners is difficult to ascertain by MS methods alone, due to the lack of characteristic fragment ions derived from the doubly homologated side chain. Owing to their unexpected cytotoxic potency, the potential impact of the compounds on human health should be further evaluated.


Subject(s)
Cytotoxins/chemistry , Cytotoxins/pharmacology , Microcystins/chemistry , Microcystins/pharmacology , Microcystis/chemistry , Tyrosine/chemistry , A549 Cells , Cell Line, Tumor , HCT116 Cells , Humans , Pentanoic Acids/chemistry , Pentanoic Acids/pharmacology
2.
Mar Drugs ; 13(1): 65-75, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25548974

ABSTRACT

Aquatic microbes produce diverse secondary metabolites with interesting biological activities. Cytotoxic metabolites have the potential to become lead compounds or drugs for cancer treatment. Many cytotoxic compounds, however, show undesirable toxicity at higher concentrations. Such undesirable activity may be reduced or eliminated by using lower doses of the cytotoxic compound in combination with another compound that modulates its activity. Here, we have examined the cytotoxicity of four microbial metabolites [ethyl N-(2-phenethyl) carbamate (NP-1), Euglenophycin, Anabaenopeptin, and Glycolipid 652] using three in vitro cell lines [human breast cancer cells (MCF-7), mouse neuroblastoma cells (N2a), and rat pituitary epithelial cells (GH4C1)]. The compounds showed variable cytotoxicity, with Euglenophycin displaying specificity for N2a cells. We have also examined the modulatory power of NP-1 on the cytotoxicity of the other three compounds and found that at a permissible concentration (125 µg/mL), NP-1 sensitized N2a and MCF-7 cells to Euglenophycin and Glycolipid 652 induced cytotoxicity.


Subject(s)
Adjuvants, Pharmaceutic/therapeutic use , Antineoplastic Agents/therapeutic use , Biological Products/therapeutic use , Glycolipids/therapeutic use , Animals , Antineoplastic Agents/administration & dosage , Biological Products/administration & dosage , Biological Products/pharmacology , Brain Neoplasms/drug therapy , Cell Line, Tumor/drug effects , Glycolipids/administration & dosage , Humans , MCF-7 Cells/drug effects , Marine Toxins/administration & dosage , Marine Toxins/therapeutic use , Mice , Neuroblastoma/drug therapy , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/therapeutic use , Piperidines/administration & dosage , Piperidines/therapeutic use , Rats , Seawater/microbiology , Thiazoles/administration & dosage , Thiazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...