Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(16): e2222084120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37040416

ABSTRACT

Macrophage targeting therapies have had limited clinical success in glioblastoma (GBM). Further understanding the GBM immune microenvironment is critical for refining immunotherapeutic approaches. Here, we use genetically engineered mouse models and orthotopic transplantation-based GBM models with identical driver mutations and unique cells of origin to examine the role of tumor cell lineage in shaping the immune microenvironment and response to tumor-associated macrophage (TAM) depletion therapy. We show that oligodendrocyte progenitor cell lineage-associated GBMs (Type 2) recruit more immune infiltrates and specifically monocyte-derived macrophages than subventricular zone neural stem cell-associated GBMs (Type 1). We then devise a TAM depletion system that offers a uniquely robust and sustained TAM depletion. We find that extensive TAM depletion in these cell lineage-based GBM models affords no survival benefit. Despite the lack of survival benefit of TAM depletion, we show that Type 1 and Type 2 GBMs have unique molecular responses to TAM depletion. In sum, we demonstrate that GBM cell lineage influences TAM ontogeny and abundance and molecular response to TAM depletion.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Tumor-Associated Macrophages/metabolism , Cell Lineage , Glioblastoma/pathology , Brain Neoplasms/pathology , Macrophages/metabolism , Neoplastic Processes , Tumor Microenvironment
2.
Dev Cell ; 57(1): 32-46.e8, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35016005

ABSTRACT

We test the hypothesis that glioblastoma harbors quiescent cancer stem cells that evade anti-proliferative therapies. Functional characterization of spontaneous glioblastomas from genetically engineered mice reveals essential quiescent stem-like cells that can be directly isolated from tumors. A derived quiescent cancer-stem-cell-specific gene expression signature is enriched in pre-formed patient GBM xenograft single-cell clusters that lack proliferative gene expression. A refined human 118-gene signature is preserved in quiescent single-cell populations from primary and recurrent human glioblastomas. The F3 cell-surface receptor mRNA, expressed in the conserved signature, identifies quiescent tumor cells by antibody immunohistochemistry. F3-antibody-sorted glioblastoma cells exhibit stem cell gene expression, enhance self-renewal in culture, drive tumor initiation and serial transplantation, and reconstitute tumor heterogeneity. Upon chemotherapy, the spared cancer stem cell pool becomes activated and accelerates transition to proliferation. These results help explain conventional treatment failure and lay a conceptual framework for alternative therapies.


Subject(s)
Cell Survival/physiology , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Cycle/genetics , Cell Division/physiology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Heterografts , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Transcriptome/genetics
3.
Nat Neurosci ; 22(4): 545-555, 2019 04.
Article in English | MEDLINE | ID: mdl-30778149

ABSTRACT

The contribution of lineage identity and differentiation state to malignant transformation is controversial. We have previously shown that adult neural stem and early progenitor cells give origin to glioblastoma. Here we systematically assessed the tumor-initiating potential of adult neural populations at various stages of lineage progression. Cell type-specific tamoxifen-inducible Cre recombinase transgenes were used to target glioblastoma-relevant tumor suppressors Nf1, Trp53 and Pten in late-stage neuronal progenitors, neuroblasts and differentiated neurons. Mutant mice showed cellular and molecular defects demonstrating the impact of tumor suppressor loss, with mutant neurons being the most resistant to early changes associated with tumor development. However, we observed no evidence of glioma formation. These studies show that increasing lineage restriction is accompanied by decreasing susceptibility to malignant transformation, indicating a glioblastoma cell-of-origin hierarchy in which stem cells sit at the apex and differentiated cell types are least susceptible to tumorigenesis.


Subject(s)
Brain Neoplasms/metabolism , Cell Lineage , Glioblastoma/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Proliferation , Female , Male , Mice, Transgenic , Neurofibromin 1/metabolism , PTEN Phosphohydrolase/metabolism , Tumor Suppressor Protein p53/metabolism
4.
Sci Rep ; 7(1): 9043, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831081

ABSTRACT

Concurrent amplifications of EGFR and PDGFRA have been reported in up to 5% of glioblastoma (GBM) and it remains unclear why such independent amplification events, and associated receptor overexpression, would be adaptive during glioma evolution. Here, we document that EGFR and PDGFRA protein co-expression occurs in 37% of GBM. There is wide cell-to-cell variation in the expressions of these receptor tyrosine kinases (RTKs) in stable tumor sphere lines, frequently defining tumor cell subpopulations with distinct sensitivities to growth factors and RTK inhibitors. We also find evidence for functional transactivation of PDGFRA by EGFR and EGF-induced receptor heterodimerization, both of which are abolished by EGFR inhibitors. These results indicate that GBM growth responses to targeted therapies previously tested in clinical trials are strongly influenced by the balance of EGFR and PDGFRA activation in individual cells, which is heterogeneous at baseline.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/genetics , Gene Expression , Glioblastoma/genetics , Protein Multimerization , Receptor, Platelet-Derived Growth Factor alpha/chemistry , Receptor, Platelet-Derived Growth Factor alpha/genetics , Cell Culture Techniques , Cell Line, Tumor , Cell Survival , ErbB Receptors/metabolism , Gene Expression Profiling , Glioblastoma/metabolism , Humans , Immunohistochemistry , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...